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Abstract:  In this paper, we initiate the study of super fair dominating set of a graph 𝐺 by giving the super fair domination 

number of some special graphs. Further, we shows that given positive integers 𝑘, 𝑚 and 𝑛 such that 𝑛 ≥  2                        and 1 ≤
 𝑘 ≤  𝑚 ≤  𝑛 − 1, there exists a connected graph 𝐺 with |𝑉(𝐺)|  =  𝑛, 𝛾𝑓𝑑(𝐺) = 𝑘, and 𝛾𝑠𝑓𝑑(𝐺)  =  𝑚.  Finally, we 

characterize the super fair dominating set of the join of two graphs.  
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1. INTRODUCTION 

 

Let 𝐺 be a simple graph. A subset 𝑆 of a vertex set 𝑉(𝐺) is a dominating set of 𝐺 if for every vertex 𝑣 ∈  𝑉(𝐺)\ 𝑆, there exists a 

vertex 𝑥 ∈  𝑆 such that 𝑥𝑣 is an edge of 𝐺. The domination number𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set 𝑆 

of 𝐺. Dominating sets have several applications in a variety of fields, including communication and electrical networks, protection 

and location strategies, data structures, social networks and others. For more background on dominating sets, the reader may refer 

to [1, 2, 3, 4, 5, 6]. Some variants of domination in graphs are found in [7, 8, 9, 10, 11]. Domination in graph was introduced by 

Claude Berge in 1958 and Oystein Ore in 1962 [12]. 

  

A fair dominating set in a graph 𝐺 (or 𝐹𝐷-set) is a dominating set 𝑆 such that all vertices not in 𝑆 are dominated by the same 

number of vertices from 𝑆; that is, every two vertices not in 𝑆 have the same number of neighbors in 𝑆. Thus a dominating set 𝑆 ⊆
 𝑉(𝐺) is an 𝐹𝐷-set in 𝐺 if for every two distinct vertices 𝑢 and 𝑣 from 𝑉(𝐺) ∖  𝑆, |𝑁(𝑢) ∩  𝑆|  =  |𝑁(𝑣) ∩  𝑆|. The fair domination 

number, 𝛾𝑓𝑑(𝐺), of 𝐺 is the minimum cardinality of a 𝐹𝐷-set. For an integer 𝑘 ≥  1, a 𝑘-fair dominating set, abbreviated 𝑘𝐹𝐷-set, 

is a dominating set 𝑆 ⊆  𝑉(𝐺) such that |𝑁(𝑢) ∩  𝑆|  =  𝑘 for every 𝑢 ∈  𝑉 (𝐺) ∖  𝑆. The 𝑘-fair domination number of 𝐺, 

denoted 𝛾𝑘𝑓𝑑(𝐺), is the minimum cardinality of a 𝑘𝐹𝐷-set. The concepts of fair domination and 𝑘-fair domination in graphs were 

introduced by Caro, Hansberg, and Henning [13].   

 

The super dominating sets in graphs was initiated by Lemanska et.al. [14]. Variation of super domination in graphs can be read in 

the paper [15, 16]. A set 𝐷 ⊂  𝑉(𝐺) is called a super dominating set if for every vertex 𝑢 ∈  𝑉(𝐺) ∖  𝐷, there exists              𝑣 ∈
 𝐷 such that 𝑁𝐺(𝑣) ∩  (𝑉(𝐺) ∖  𝐷) = {𝑢}. The super domination number of 𝐺 is the minimum cardinality among all super 

dominating set in 𝐺 denoted by 𝛾𝑠𝑝(𝐺).  

 

Motivated by super domination and fair domination, we initiate the study of super fair domination in graphs. A fair dominating set 

𝑆 ⊆  𝑉(𝐺) is a super fair dominating set(or 𝑆𝐹𝐷-set) if for every 𝑢 ∈  𝑉(𝐺) ∖  𝑆, there exists 𝑣 ∈  𝑆 such that              𝑁𝐺(𝑣) ∩
 (𝑉(𝐺) ∖  𝑆) = {𝑢}. The minimum cardinality of an 𝑆𝐹𝐷-set, denoted by 𝛾𝑠𝑓𝑑(𝐺), is called the super fair domination number of 𝐺. 

For general concepts we refer the reader to [17]. 

 

2. RESULTS 

 

Remark 2.1 A super fair dominating set is a super dominating and a fair dominating set of a nontrivial graph 𝐺.   
  

Since the minimum super dominating set 𝑆 of a nontrivial complete graph 𝐾𝑛 is 𝑛 − 1, it follows that 𝛾𝑠𝑓𝑑(𝐾𝑛) = 𝑛 − 1. With this 

observation, the following remark holds.  

 

Remark 2.2 Let 𝐺 be a nontrivial connected graph 𝐺 of order 𝑛. then 1 ≤ 𝛾𝑓𝑑(𝐺) ≤ 𝛾𝑠𝑓𝑑(𝐺) ≤  𝑛 − 1.  
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The path 𝑃𝑛  of order  𝑛  is the graph with distinct vertices  𝑣1, 𝑣2, . . . , 𝑣𝑛  and edges  𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑛−1𝑣𝑛 .  In this case,  𝑃𝑛  is 

also called a 𝑣1-𝑣𝑛 path or the path 𝑃(𝑣1, 𝑣𝑛).   
 

 
  

Remark 2.4  Let 𝑛 ≥  2.  Then 𝛾𝑓𝑑(𝑃𝑛) ≤ 𝛾𝑠𝑓𝑑(𝑃𝑛)  with equality occurs when  𝑛 = 2 or 𝑛 = 4.   

 

The cycle 𝐶𝑛 of order 𝑛, 𝑛 ≥  3, is the graph with distinct vertices 𝑣1,𝑣2, . ..,𝑣𝑛  and edges 𝑣1𝑣2, 𝑣2𝑣3, . .., 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1. 
 

 
Remark  2.6 Let 𝑛 ≥  3. Then 𝛾𝑓𝑑(𝐶𝑛) ≤ 𝛾𝑠𝑓𝑑(𝐶𝑛) with equality occur when 𝑛 = 5.   

 

A complete graph of order 𝑛, denoted by 𝐾𝑛 , is the graph in which every pair of its distinct vertices are joined by an edge. 

  

Observation 2.7  Let 𝑛 ≥  2. The 𝛾𝑠𝑓𝑑(𝐾𝑛) = 𝑛 − 1.  

 

Remark 2.8 Let 𝑛 ≥  2. Then 𝛾𝑓𝑑(𝐾𝑛) ≤ 𝛾𝑠𝑓𝑑(𝐾𝑛) with equality occur when 𝑛 = 2.  

 

A graph 𝐺 is called a bipartite graph if its vertex-set 𝑉(𝐺) can be partitioned into two nonempty subsets 𝑉1 and 𝑉2 such that every 

edge of 𝐺 has one end in 𝑉1 and one end in 𝑉2. The sets 𝑉1 and 𝑉2 are called the partite sets of 𝐺. If each vertex in 𝑉1 is adjacent to 

every vertex in 𝑉2, then 𝐺 is called a complete bipartite graph. If |𝑉1| = 𝑚 and |𝑉2| = 𝑛, then the complete bipartite graph is 

denoted by 𝐾𝑚,𝑛 . 
 

 
 

Remark 2.10  Let 𝑚 ≥  2 and 𝑛 ≥  2. Then 𝛾𝑓𝑑(𝐾𝑚,𝑛) ≤ 𝛾𝑠𝑓𝑑(𝐾𝑛,𝑚) with equality occur when  𝑛 = 𝑚 = 2.  

 

A star graph 𝑆𝑛 = 𝐾1 + 𝑃𝑛 is a complete bipartite 𝐾1,𝑛 where 𝑛 ≥ 1.  
 

Observation 2.11  𝛾𝑠𝑓𝑘(𝑆𝑛) = 𝑛 for all 𝑛 ≥  1.  

 

Remark 2.12  Let 𝑛 ≥ 1. Then 𝛾𝑓𝑑(𝑆𝑛) ≤ 𝛾𝑠𝑓𝑑(𝑆𝑛) with equality occur when 𝑛 = 1.  

 

Let 𝑛 ≥  1.  The fan of order 𝑛 + 1,  denoted by 𝐹𝑛,  is the graph 𝐾1 + 𝑃𝑛. 
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Remark 2.14} Let 𝑛 ≥  1. Then 𝛾𝑓𝑑(𝐹𝑛) ≤ 𝛾𝑠𝑓𝑑(𝐹𝑛) with equality occur when 𝑛 = 1.  

 

Let 𝑛 ≥  3. The wheel of order 𝑛 + 1, denoted by 𝑊𝑛, is the graph 𝐾1 + 𝐶𝑛. 
 

  
 

Remark 2.16   𝛾𝑓𝑑(𝑊𝑛) < 𝛾𝑠𝑓𝑑(𝑊𝑛) for all 𝑛 ≥  3. 

 

Consider the graph 𝐺 = 𝐾1 + 𝐶7 with vertex set 𝑉(𝐺) = {𝑥} ∪ {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣7}  and edge set                                             𝐸(𝐺) =
{𝑣𝑖𝑣𝑖+1: 𝑖 = 1,2, . . . ,6} ∪ {𝑣7𝑣1} ∪  {𝑥𝑣𝑖: 𝑖 = 1,2, . . . ,7}. The set 𝑆 = {𝑥, 𝑣1, 𝑣2, 𝑣4, 𝑣5} is a minimum super dominating set of 𝐺 but 

not a fair dominating set of 𝐺 since 𝑣3, 𝑣6 ∈  𝑉(𝐺) ∖  𝑆 and |𝑁(𝑣3) ∩  𝑆| ≠ |𝑁(𝑣6) ∩  𝑆|. Thus the following remark holds. 

 

Remark 2.17  Every minimum super dominating set need not be a fair dominating set in a graph 𝐺. 
 

The following result says that the value of the parameter 𝛾𝑠𝑓𝑑(𝐺) ranges over all positive integers 1,2, . . . , 𝑛 − 1. 

  

Theorem 2.18 Given positive integers 𝑘, 𝑚 and 𝑛 such that 𝑛 ≥ 2 and 1 ≤  𝑘 ≤  𝑚 ≤  𝑛 − 1 there exists a connected 

graph 𝐺 with |𝑉(𝐺)|  =  𝑛, 𝛾𝑓𝑑(𝐺) = 𝑘 and 𝛾𝑠𝑓𝑑(𝐺)  =  𝑚. 

 

Proof: Consider the following cases: 

  

Case1. Suppose 𝑚 =  𝑛 − 1. 
  

Let 𝐺 =  𝐾𝑛 . Then, clearly, |𝑉(𝐺)|  =  𝑛 and 𝛾𝑓𝑑(𝐺)  =  1 = 𝑘 and 𝛾𝑑𝑓𝑑(𝐺) = 𝑛 − 1 = 𝑚. 

  

Case2. Suppose  𝑚 < 𝑛 − 1. 
  

Consider 1 ≤  𝑘 = 𝑚. Let 𝐺 = 𝑃𝑘 ∘  𝐾1. Then the set 𝑆 = 𝑉(𝑃𝑘) is a fair dominating set and a super dominating set of 𝐺. Since 

𝑆 is both minimum fair and super dominating sets, it follows that 𝑆 is a minimum super fair dominating set of 𝐺. Thus,   |𝑉(𝐺)| =
2𝑘 = 𝑛, 𝛾𝑓𝑑(𝐺) = |𝑆| = 𝑘, and 𝛾𝑠𝑓𝑑(𝐺) = 𝑘 = 𝑚. 

  

Consider 1 < 𝑘 < 𝑚. Let 𝐺 = 𝐶𝑛 where 𝑛 = 2𝑚 − 1 (𝑚 ≥ 5), 𝑘 ∈  {𝑛/3, (𝑛 + 2)/3, (𝑛 + 4)/3} and 𝑛 ≡  1(𝑚𝑜𝑑 4). 

If 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and 𝐸(𝐶𝑛) = {𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑛𝑣1}, then the set 𝐴 = {𝑣3𝑖−2: 𝑖 = 1,2, . . . , 𝑛/3} or                           𝐴 =
{𝑣3𝑖−2: 𝑖 = 1,2, . . . , (𝑛 + 2)/3} or 𝐴 = {𝑣3𝑖−2: 𝑖 = 1,2, . . . , (𝑛 + 4)/3} is a minimum fair dominating set of 𝐺 and the set 𝐵 =

{𝑣4𝑖−3: 𝑖 = 1,2, . . . ,
𝑛+3

4
} ∪  {𝑣4𝑖−2: 𝑖 = 1,2, . . . , (𝑛 − 1)/4} is a minimum super fair dominating set of 𝐺.  Thus,   |𝑉(𝐺)| =

𝑛, 𝛾𝑓𝑑(𝐺) = |𝐴| = 𝑘, and 𝛾𝑠𝑓𝑑(𝐺) = |𝐵| = (𝑛 + 3)/4 + (𝑛 − 1)/4 = (𝑛 + 1)/2 = (2𝑚 − 1 + 1)/2 = 𝑚. 

  

Consider 1 = 𝑘 < 𝑚. Let 𝐺 = {𝑥} + 𝑃𝑛−1 where 𝑛 = 2𝑚 − 1 and 𝑛 ≡  1(𝑚𝑜𝑑 4). If 𝑉(𝑃𝑛−1) = {𝑣1, 𝑣2, . . . , 𝑣𝑛−1} 

and 𝐸(𝑃𝑛−1) = {𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑛−2𝑣𝑛−1}, the set 𝐴 = {𝑥} is the minimum fair dominating set of 𝐺 and the set                       𝐵 =

{𝑥} ∪ {𝑣4𝑖−2: 𝑖 = 1,2, . . . ,
𝑛−1

4
} ∪  {𝑣4𝑖−1: 𝑖 = 1,2, . . . , (𝑛 − 1)/4} is a minimum super fair dominating set of  𝐺.  Thus, |𝑉(𝐺)| =

1 + (𝑛 − 1) = 𝑛,   𝛾𝑓𝑑(𝐺) = |𝐴| = 1 = 𝑘,    and     𝛾𝑠𝑓𝑑(𝐺) = |𝐵| = 1 + (𝑛 − 1)/4 + (𝑛 − 1)/4 = (𝑛 + 1)/2 = 𝑚. 

  

This proves the assertion. ∎ 

 

The next result is an immediate consequence of Theorem 2.18 

 

Corollary 2.19 The difference 𝛾𝑠𝑓𝑑(𝐺) − 𝛾𝑓𝑑(𝐺) can be made arbitrarily large. 

 

The join of two graphs 𝐺 and 𝐻 is the graph 𝐺 + 𝐻 with vertex-set 𝑉(𝐺 + 𝐻) = 𝑉(𝐺) ∪  𝑉(𝐻) and edge-set                          𝐸(𝐺 +
𝐻) = 𝐸(𝐺) ∪  𝐸(𝐻) ∪ = {𝑢𝑣: 𝑢 ∈  𝑉(𝐺), 𝑣 ∈  𝑉(𝐻)}. 
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We need the following results for the characterization of the super fair domination of the join of two graphs. 

  

Lemma 2.20  Let 𝐺 and 𝐻 be connected non-complete graphs with |𝑉(𝐺)| = |𝑉(𝐻)|. If 𝑆𝐺 = 𝑉(𝐺) ∖  {𝑎} for some                  𝑎 ∈
 𝑉(𝐺), 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑏} for some 𝑏 ∈  𝑉(𝐻), and |𝑁𝐺(𝑎)| = |𝑁𝐻(𝑏)|, then 𝑆 = 𝑆𝐺 ∪  𝑆𝐻 is a super fair dominating set of 𝐺 + 𝐻.   
 

 Proof: Suppose that 𝑆𝐺 = 𝑉(𝐺) ∖ {𝑎} for some 𝑎 ∈  𝑉(𝐺) and 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑏} for some 𝑏 ∈  𝑉(𝐻). Then 

  

𝑆 = 𝑆𝐺 ∪  𝑆𝐻  =   (𝑉(𝐺) ∖ {𝑎}) ∪  (𝑉(𝐻) ∖ {𝑏}) 

              =   (𝑉(𝐺) ∪  𝑉(𝐻)) ∖  {𝑎, 𝑏} 

                                                                            =   𝑉(𝐺 + 𝐻) ∖
 {𝑎, 𝑏} 
 

 

  

  

Thus,  𝑉(𝐺 + 𝐻) ∖  𝑆 = {𝑎, 𝑏}. Since 𝐺 is non-complete, choose 𝑎 ∈  𝑉(𝐺) such that 𝑎𝑐 ≠  𝐸(𝐺) for some                                𝑐 ∈
 𝑉(𝐺) ∖ {𝑎} = 𝑆𝐺 . Similarly, since 𝐻 is non-complete, choose 𝑏 ∈  𝑉(𝐻) such that 𝑏𝑑 ≠  𝐸(𝐻) for some                           𝑑 ∈
 𝑉(𝐻) ∖ {𝑏} = 𝑆𝐻 . Consider 𝑎 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆. Then there exists 𝑑 ∈  𝑆 such that 𝑁𝐺+𝐻(𝑑) ∩  (𝑉(𝐺 + 𝐻) ∖  𝑆) = {𝑎}. 

Consider 𝑏 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆. Then there exists 𝑐 ∈  𝑆 such that 𝑁𝐺+𝐻(𝑐) ∩  (𝑉(𝐺 + 𝐻) ∖  𝑆) = {𝑏}. Thus, 𝑆 is a super dominating 

set of 𝐺 + 𝐻. Now, 

 

                                                           |𝑁𝐺+𝐻(𝑎)|  =   |𝑁𝐺(𝑎) ∪  𝑉(𝐻)|  
                                                                              =   |𝑁𝐺(𝑎)| + |𝑉(𝐻)| 
                                                                                        =   |𝑁𝐻(𝑏)| + |𝑉(𝐺)|   
                                                                                        =   |𝑁𝐻(𝑏) ∪  𝑉(𝐺)|       
                                                                               =   |𝑁𝐺+𝐻(𝑏)| 
 

Thus, for 𝑎, 𝑏 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆, |(𝑁{𝐺+𝐻}(𝑎) ∩  𝑆| = |𝑁𝐺+𝐻(𝑏) ∩  𝑆| and so, 𝑆 is a fair dominating set of 𝐺 + 𝐻. Accordingly, 𝑆 is 

a super fair dominating set of 𝐺 + 𝐻. ∎ 

 

Theorem 2.21 Let 𝐺 and 𝐻 be connected non-complete graphs. Then 𝑆 = 𝑆𝐺 ∪  𝑆𝐻 is a super fair dominating set of 𝐺 + 𝐻 where 

𝑆𝐺 ⊆  𝑉(𝐺) and 𝑆𝐻 ⊆  𝑉(𝐻) if and only if one of the following statements is satisfied. 

 

(𝑖)    𝑆𝐺  is a super fair dominating set of 𝐺 and 𝑆𝐻 = 𝑉(𝐻).     
(𝑖𝑖)  𝑆𝐻  is a super fair dominating set of 𝐻 and 𝑆𝐺 = 𝑉(𝐺). 
(𝑖𝑖𝑖) 𝑆𝐺 = 𝑉(𝐺) ∖ {𝑤} for some 𝑤 ∈  𝑉(𝐺), 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑧} for some  𝑧 ∈  𝑉(𝐻), and one of the following conditions 

hold. 

   

           𝑎) |𝑉(𝐺)| = |𝑉(𝐻)| and |𝑁𝐺(𝑤)| = |𝑁𝐻(𝑧)|.  

            𝑏) |𝑆𝐻| − |𝑆𝐺| = |𝑁𝐻(𝑧)| −
|𝑁𝐺(𝑤)|. 
 

 

   

 

Proof: Suppose that 𝑆 = 𝑆𝐺 ∪  𝑆𝐻 ⊆  𝑉(𝐺 + 𝐻) is a super fair dominating set of 𝐺 + 𝐻. Consider the following cases: 

  

Case1: Suppose 𝑆𝐺  is a super fair dominating set of 𝐺.  
  

If 𝑆𝐻 = 𝑉(𝐻), then we are done with statement (𝑖). Suppose 𝑆𝐻 ≠ 𝑉(𝐻).  Let 𝑥 ∈  𝑉(𝐻) ∖ 𝑆𝐻 . Then                                         𝑥 ∈
 𝑉(𝐺 + 𝐻) ∖ 𝑆 and 𝑥𝑦 ∈  𝐸(𝐺 + 𝐻) for all 𝑦 ∈  𝑉(𝐺). Let 𝑢 ∈  𝑉(𝐺) ∖ 𝑆𝐺 .  Now, if we assume that there exists               𝑢′ ∈
 𝑉(𝐺) ∖ 𝑆𝐺   distinct from 𝑢, then  𝑢′, 𝑢 ∈  𝑁𝐺+𝐻(𝑧)  for all 𝑧 ∈  𝑆𝐻 .  Thus,                                                                   𝑁𝐺+𝐻(𝑧) ∩
 (𝑉(𝐺 + 𝐻) ∖ 𝑆) = {𝑢, 𝑢′:  𝑢′ ∈  𝑉(𝐺) ∖  𝑆𝐺} ∪  {𝑥 ∈  𝑉(𝐻) ∖ 𝑆𝐻: 𝑥 ∈  𝑁𝐻(𝑧)} contrary to our assumption that 𝑆 is a super fair 

dominating set of 𝐺 + 𝐻. This means that there is only one element of 𝑉(𝐺) ∖  𝑆𝐺  and so 𝑆𝐺 = 𝑉(𝐺) ∖ {𝑤} for some 𝑤 ∈  𝑉(𝐺).  
  

Similarly, if we assume that there exists 𝑥′ ∈  𝑉(𝐻) ∖ 𝑆𝐻 distinct from 𝑥, then 𝑥′, 𝑥 ∈  𝑁𝐺+𝐻(𝑣) for all 𝑣 ∈  𝑆𝐺 . Thus,  𝑁𝐺+𝐻(𝑣) ∩
 (𝑉(𝐺 + 𝐻) ∖ 𝑆) = {𝑥,  𝑥′ ∶ 𝑥′ ∈  𝑉(𝐻) ∖ 𝑆𝐻} ∪  {𝑢 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 : 𝑢 ∈  𝑁𝐺(𝑣)} contrary to our assumption that 𝑆 is a super fair 

dominating set of 𝐺 + 𝐻. This means that there is only one element of 𝑉(𝐻) ∖ 𝑆𝐻 and so 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑧} for some 𝑧 ∈  𝑉(𝐻).  
  

Now,     consider   |𝑉(𝐺)|  =  |𝑉(𝐻)|.   If   there   exist 𝑤 ∈  𝑉(𝐺) ∖  𝑆𝐺    and   𝑧 ∈  𝑉(𝐻) ∖ 𝑆𝐻  such  that|𝑁𝐺(𝑤)| ≠ |𝑁𝐻(𝑧)|, 
then  
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|𝑁𝐺+𝐻(𝑤)|   =   |𝑁𝐺(𝑤) ∪  𝑉(𝐻)|  
                           =   |𝑁𝐺(𝑤)| + |𝑉(𝐻)|   
                          ≠   |𝑁𝐻(𝑧)| + |𝑉(𝐺)|   

                            =   |𝑁𝐻(𝑧) ∪  𝑉(𝐺)|       
                                                                                                              =   |𝑁𝐺+𝐻(𝑧)|    

  

Thus, for 𝑤, 𝑧 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆, |(𝑁𝐺+𝐻(𝑤) ∩ 𝑆| ≠ |𝑁𝐺+𝐻(𝑧) ∩  𝑆| contrary to our assumption that and 𝑆 is a fair dominating set 

of 𝐺 + 𝐻. Consequently, |𝑁𝐺(𝑤)| = |𝑁𝐻(𝑧)|. 
  

Consider |𝑉(𝐺)| ≠ |𝑉(𝐻)|. Then |𝑆𝐺| = |𝑉(𝐺) ∖ {𝑤}| ≠ |𝑉(𝐻) ∖ {𝑧}| = 𝑆𝐻 . If |𝑁𝐺(𝑤)| = |𝑁𝐻(𝑧)|, then by following similar 

computations above, 𝑆 is not a fair dominating set of 𝐺 + 𝐻. Consequently, |𝑁𝐺(𝑤)| ≠ |𝑁𝐻(𝑧)|.  Since 𝑆 is a fair dominating set 

of 𝐺 + 𝐻, 
  

|𝑁𝐺+𝐻(𝑤) ∩  𝑆|   =   |𝑁𝐺+𝐻(𝑧) ∩  𝑆| 

|(𝑁𝐺(𝑤) ∪  𝑉(𝐻)) ∩  𝑆|   =   |(𝑁𝐻(𝑧) ∪  𝑉(𝐺)) ∩  𝑆| 

|(𝑁𝐺(𝑤) ∩  𝑆) ∪  (𝑉(𝐻) ∩  𝑆)|   =   |(𝑁𝐻(𝑧) ∩  𝑆) ∪  (𝑉(𝐺) ∩  𝑆)| 
|𝑁𝐺(𝑤) ∪  𝑆𝐻|   =   |𝑁𝐻(𝑧) ∪  𝑆𝐺| 

                                                                           |𝑁𝐺(𝑤)| + |𝑆𝐻|   =   |𝑁𝐻(𝑧)| + |𝑆𝐺| 𝑤ℎ𝑒𝑟𝑒 |𝑆𝐺| ≠ |𝑆𝐻| 
                                                                                                                            𝑎𝑛𝑑  |𝑁𝐺(𝑤)| ≠ |𝑁𝐻(𝑧)| 
                                                                                  |𝑆𝐻| − |𝑆𝐺|   =   |𝑁𝐻(𝑧)| − |𝑁𝐺(𝑤)|. 
  

This proves statement (𝑖𝑖𝑖). 
  

Case2: Suppose 𝑆𝐻 is a super fair dominating set of 𝐻.  
  

If 𝑆𝐺 = 𝑉(𝐺), then we are done with statement (𝑖𝑖).  
  

Suppose 𝑆𝐺 ≠ 𝑉(𝐺). Then by similar argument above, statement (𝑖𝑖𝑖) holds. 

  

For the converse, suppose that  statement (𝑖)  is   satisfied.  Let  𝑆 = 𝑆𝐺 ∪  𝑆𝐻   where   𝑆𝐺 ⊆  𝑉(𝐺)   and 𝑆𝐻 ⊆  𝑉(𝐻).  Let  𝑢 ∈
 𝑉(𝐺) ∖ 𝑆𝐺 .  Since 𝑆𝐺  is a super dominating set of 𝐺, there exists 𝑣 ∈  𝑆𝐺  such that 𝑁𝐺(𝑣) ∩  (𝑉(𝐺) ∖ 𝑆𝐺) = {𝑢}.  Since 𝑆𝐻 =

𝑉(𝐻),   𝑢 ∈  𝑉(𝐺) ∖ 𝑆𝐺 = (𝑉(𝐺) ∪  𝑉(𝐻)) ∖ (𝑆𝐺 ∪  𝑉(𝐻)) = 𝑉(𝐺 + 𝐻) ∖  𝑆. Thus, for all 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖ 𝑆,  there exists 𝑣 ∈

 𝑆 such that 𝑁𝐺+𝐻(𝑣) ∩  (𝑉(𝐺 + 𝐻) ∖  𝑆) = {𝑢}, that is, 𝑆 is a super dominating set of 𝐺 + 𝐻. 
  

Let 𝑢, 𝑢′ ∈  𝑉(𝐺) ∖  𝑆𝐺 .  Since 𝑆𝐺  is a fair dominating set of 𝐺, |𝑁𝐺(𝑢) ∩  𝑆𝐺| = |𝑁𝐺(𝑢′) ∩  𝑆𝐺|.  Since 𝑆𝐻 = 𝑉(𝐻),              𝑢, 𝑢′ ∈
 𝑉(𝐺) ∖ 𝑆𝐺 = 𝑉(𝐺 + 𝐻) ∖  𝑆 and 𝑁𝐺(𝑢) ∪  𝑉(𝐻) = 𝑁𝐺+𝐻(𝑢). Thus, for all 𝑢, 𝑢′ ∈  𝑉(𝐺 + 𝐻) ∖  𝑆,  

 

|𝑁𝐺+𝐻(𝑢) ∩  𝑆|   =   |(𝑁𝐺(𝑢) ∪  𝑉(𝐻)) ∩  𝑆|  

                                          =   |(𝑁𝐺(𝑢) ∩  𝑆) ∪  (𝑉(𝐻) ∩  𝑆)| 
                                    =   |𝑁𝐺(𝑢) ∩  𝑆| + |𝑉(𝐻) ∩  𝑆| 

                                     =   |𝑁𝐺(𝑢′) ∩  𝑆| + |𝑉(𝐻) ∩  𝑆| 
                                          =   |(𝑁𝐺(𝑢′) ∩  𝑆) ∪  (𝑉(𝐻) ∩  𝑆)| 

                              =   |(𝑁𝐺(𝑢′) ∪  𝑉(𝐻)) ∩  𝑆| 

                 =    |𝑁𝐺+𝐻(𝑢′) ∩  𝑆|  
 

This means that 𝑆 is a super fair dominating set of 𝐺 + 𝐻. 
  

Similarly, if statement (𝑖𝑖) is satisfied, then 𝑆 is a super fair dominating set of 𝐺 + 𝐻. 
  

Now, suppose that statement (𝑖𝑖𝑖) 𝑎) is satisfied. Then by Lemma 2.20 , 𝑆 is a super fair dominating set of 𝐺 + 𝐻. Next, suppose 

that statement (𝑖𝑖𝑖) 𝑏) is satisfied. Then |𝑆𝐻| − |𝑆𝐺| = |𝑁𝐻(𝑧)| − |𝑁𝐺(𝑤)| for some 𝑧 ∈  𝑉(𝐻) and for some 𝑤 ∈  𝑉(𝐺). Thus for 

all 𝑤, 𝑧 ∈  𝑉(𝐺 + 𝐻) ∖ 𝑆, 
  

                |𝑆𝐻| − |𝑆𝐺|   =   |𝑁𝐻(𝑧)| − |𝑁𝐺(𝑤)| 
|𝑁𝐺(𝑤)| + |𝑆𝐻|   =   |𝑁𝐻(𝑧)| + |𝑆𝐺| 

|𝑁𝐺(𝑤) ∪  𝑆𝐻|   =   |𝑁𝐻(𝑧) ∪  𝑆𝐺| 
|(𝑁𝐺(𝑤) ∩  𝑆) ∪  (𝑉(𝐻) ∩  𝑆)|   =   |(𝑁𝐻(𝑧) ∩  𝑆) ∪  (𝑉(𝐺) ∩  𝑆)| 

|(𝑁𝐺(𝑤) ∪  𝑉(𝐻)) ∩  𝑆|   =   |(𝑁𝐻(𝑧) ∪  𝑉(𝐺)) ∩  𝑆| 

                                                                           |𝑁𝐺+𝐻(𝑤) ∩  𝑆|  =   |𝑁𝐺+𝐻(𝑧) ∩  𝑆|, 
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                                                                                                               since 𝑤 ∈  𝑉(𝐺)𝑎𝑛𝑑 𝑧 ∈  𝑉(𝐻). 
     

This shows that 𝑆 is a fair dominating set in 𝐺 + 𝐻. 
  

Finally, let 𝑤 ∈  𝑉(𝐺) ∖ 𝑆𝐺  and 𝑧 ∈  𝑉(𝐻) ∖ 𝑆𝐻 . Note that 𝑉(𝐺 + 𝐻) ∖ 𝑆 = {𝑤, 𝑧}. Since 𝐺 is non-complete ,  there   exists   𝑣 ∈
 𝑆𝐺    such   that   𝑤𝑣 ≠   𝐸(𝐺).    Thus ,   there   exists   𝑣 ∈  𝑆   such   that  𝑁𝐺+𝐻(𝑣)  ∩   (𝑉(𝐺 + 𝐻)  ∖  𝑆)  =  {𝑧}.   Since  𝐻   is   

non-complete ,   there   exists   𝑣′  ∈   𝑆𝐻  such that 𝑧𝑣′ ≠  𝐸(𝐻). Thus, there exists 𝑣′ ∈  𝑆 such that                 𝑁𝐺+𝐻(𝑣′) ∩
 (𝑉(𝐺 + 𝐻) ∖ 𝑆) = {𝑤}. This shows that 𝑆 is a super dominating set of 𝐺 + 𝐻. Accordingly, 𝑆 is a super fair dominating set of 𝐺 +
𝐻.  ∎ 

 

As a consequence of Theorem 2.21, we obtain the following result. 

Corollary 2.22 Let 𝐺 and 𝐻 be connected non-complete graphs of order 𝑚 and 𝑛 respectively. Then                                  𝛾𝑠𝑓𝑑(𝐺 +

𝐻) = 𝑚𝑖𝑛{𝛾𝑠𝑓𝑑(𝐺) + 𝑛, 𝛾𝑠𝑓𝑑(𝐻) + 𝑚, 𝑚 + 𝑛 − 2}.   

  

Proof: Let 𝐺 and 𝐻 be connected non-complete graphs of order 𝑚 and 𝑛 respectively. Suppose 𝑆 = 𝑆𝐺 + 𝑆𝐻 is a super fair 

dominating set of 𝐺 + 𝐻, where 𝑆𝐺 ⊆  𝑉(𝐺) and 𝑆𝐻 ⊆  𝑉(𝐻). Then by Theorem 2.21, 𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤  |𝑆| = |𝑆𝐺 ∪  𝑉(𝐻)| 

where 𝑆𝐺  is a super fair dominating set of  𝐺 or  𝛾𝑠𝑓𝑑(𝐺 +  𝐻)  ≤   |𝑆|  =  | 𝑆𝐻  ∪   𝑉(𝐺) |      where    𝑆𝐻    is  a   super    fair   

dominating    set    of   𝐻   or  𝛾𝑠𝑓𝑑(𝐺 +  𝐻)  ≤   |𝑆|  =  | 𝑆𝐺  ∪   𝑆𝐻 |    where   𝑆𝐺  =  𝑉(𝐺)  ∖   {𝑤}   and   𝑆𝐻 = 𝑉(𝐻)  ∖  {𝑧}  for 

some 𝑤 ∈  𝑉(𝐺) and 𝑧 ∈  𝑉(𝐻). Thus,   

 

                                                  𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤   |𝑆𝐺 ∪  𝑉(𝐻)|  for all  𝑆𝐺 ⊂  𝑉(𝐺) 

                                                                            =  |𝑆𝐺| + |𝑉(𝐻)|  for all 𝑆𝐺 ⊂  𝑉(𝐺) 
 

This implies that 𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤ 𝛾𝑠𝑓𝑑(𝐺) + 𝑛, or 

 

                                                  𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤   |𝑆𝐻 ∪  𝑉(𝐺)|  for all  𝑆𝐻 ⊂  𝑉(𝐻) 

                                                                            =   |𝑆𝐻| + |𝑉(𝐺)|for all 𝑆𝐻 ⊂  𝑉(𝐻) 

 
This implies that 𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤ 𝛾𝑠𝑓𝑑(𝐻) + 𝑚, or 

 

𝛾𝑠𝑓𝑑(𝐺 + 𝐻) ≤   |(𝑉(𝐺) ∖ {𝑤}) ∪  (𝑉(𝐻) ∖ {𝑧}| 

                                        =   (|(𝑉(𝐺)| − |{𝑤}|) + (|𝑉(𝐻)| − |{𝑧}|) 
      =   (𝑚 − 1) + (𝑛 − 1) 

 
Therefore, 𝛾𝑠𝑓𝑑(𝐺 + 𝐻) = 𝑚𝑖𝑛{𝛾𝑠𝑓𝑑(𝐺) + 𝑛, 𝛾𝑠𝑓𝑑(𝐻) + 𝑚, 𝑚 + 𝑛 − 2)}.  ∎ 
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