
Volume 6, No.3, March 2019

Journal of Global Research in Mathematical Archives

RESEARCH PAPER

http://www.jgrma.infoAvailable online at

© JGRMA 2019, All Rights Reserved 43

 NUMERICAL SOLUTION OF FIRST ORDER INITIAL VALUE PROBLEMS BY

CROSSBRED NEURAL NETWORKS

Mazin Hashim Suhhiem

"Department of Statistics, University of Sumer, Alrifaee, Iraq

mazin.suhhiem@yahoo.com

Abstract: In this work, anovel numerical method based on crossbred neural networkis proposed to solve the first order ordinary differential

equation. Here crossbred neural network is considered as a part of large field called neural computing or soft computing. The crossbred feed

forward neural network based on replacing each element in the training set by a polynomial of third degree. The model finds the approximated

solution of the first orderinitial value problems inside its domain for the close enough neighborhood of the initial point. Thismethod, in

comparison with existing numerical methods, shows that the use of crossbred neural networks provides solutions with good generalization and

high accuracy.

Keywords: first order ordinary differential equation, crossbred neural network, trial solution, minimized error function, hyperbolic tangent

activation function.

1. INTRODUCTION

Many methods have been developed so far for solving ordinary differential equations since it is utilized widely for the purpose of

modeling problems in science and engineering.

 Most of the practical problems require the solution of the ordinary differential equation which satisfies initial conditions ,

therefore, the ordinary differential equation must be solved .Many ordinary differential equation could not be solved exactly ,thus

considering their approximate solutions is becoming more important.

In 1990 researchers began using artificial neural network (ANN) for solving ordinary differential equation such as : lee , Kang in

[1]; Meade , Fernandez in [2,3] ;Lagaris , Likasin [4] ; Liu ,Jammes in [5] ; Tawfiq in [6] ;malek , shekari in [7] ; Pattanaik ,

Mishra in [8];Baymani ,Kerayechian in [9] ;Suhhiem in[10] and other researchers .

In this work, we have used crossbred feed forward artificial neural network to find the numerical solution of the first order initial

value problems. The crossbred neural network based on replacing each element in the training set by a polynomial of third degree.

This polynomial can be written as: k(x) = ϵ(x3 + x2 + x + 1), ϵ ∈ (0,1).

 in this method we test different values for ϵ in the interval (0,1) which contains many infinitely suitable and not suitable chosen

values for ϵ .Therefore,finding the suitable value of ϵ is not easily .Our numerical results showed that this method is better and

much accuracy in comparison with other numerical methods. In general, the modified method in this work iseffective for

solving the first order ordinary differential equation.

In the proposed method, the crossbred neural network model is applied as universal approximator . We use trial function, this trial

function is a combination of two terms. The first term is responsible for the initial condition while the second term contains the

crossbred neural network adjustable parameters to be calculated. Our crossbred neural network is a three-layer feed forward neural

network where the connections weights, biases and inputs are given as real numbers.

The trial solution of the first order initial value problem is written as a sum of two parts. The first part satisfies the initial

condition, it contains no adjustable parameters. While the second part involves crossbred feed-forward neural networks which

containing adjustable parameters.

2. ARTIFICIAL NEURAL NETWORK

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 44

Artificial neural networks are learning machines that can learn any arbitrary functional mapping between input and output. They

are fast machines and can be implemented in parallel, either in software or in hardware. In fact, the computational complexity of

ANN is polynomial in the number of neurons used in the network .Parallelism also brings with it the advantages of robustness and

fault tolerance.

(i.e.) ANN is a simplified mathematical model of the human brain. It can be implemented by both electric elements and computer

software. It is a parallel distributed processor with large numbers of connections It is an information processing system that has

certain performance characters in common with biological neural networks[1,2].

3. CROSSBRED NEURAL NETWORK

 In this section , we introduce a novel method to modify the artificial neural networks .This new method is based on replacing

each x in the input vector (training set)x⃗ = (x1 , x2 , … , xn) , xj ∈ [a, b] by a polynomial of third degree . .

We have used the function:

k(x) = ϵ(x3 + x2 + x + 1), ϵ ∈ (0,1).

Then the input vector will be:

(k(x1) , k(x2) , … , k(xn)), k(xj) ∈ (a , b) and j=1,2,…,n

Using crossbred neural network makes that training points should be selected over the open interval (a , b) without training the

neural network in the range of first and end points. Therefore, the calculating volume involving computational error is reduced. In

fact, the training points depending on the distance [a , b] selected for training neural network are converted to similar points in the

open interval (a , b) by using the new approach, then the network is trained in these similar areas [10].

4. DESCRIPTION of THE METHOD

In this section we illustrate how the proposed method can be used to find the approximate solution of the first order ordinary

differential equation:

G(x , Ψ(x) , ∇ Ψ(x) , ∇2 Ψ(x), …) = 0 , x ∈ D(1)

Wherex = (x1, x2 , … , xn) ∈ Rn , D ⊂ Rndenotes the domain and Ψ(x) is the computed solution.

To obtain a solution to the above differential equation, the collocation method is adopted which assumes a discretization of the

domain D into a set points D̂ . The problem is then transformed into the following system of equations:

G(xi , Ψ(xi) , ∇ Ψ(xi) , ∇
2 Ψ(xi), …) = 0 ,∀ xi ∈ D̂ (2)

If Ψt(xi , p) denotes a trial solution with adjustable parameters p, the problem is transformed to a discretize form :

min
p

∑ (G(xi, Ψt(xi, p), ∇ Ψt(xi, p), ∇
2Ψt(xi, p), …))

2

xi ∈ D̂ (3)

The trial solution Ψt employs a feed forward crossbredneural network and the parameters p correspond to the weights and biases

of the neural architecture . We choose a form for the trial function Ψt(x) such that it satisfies the initial condition. This is achieved

by writing it as a sum of two terms.

 Ψt(x) =A(x) + F(x , N(k(x) , p))(4)

where N(k(x) , p) is a single-output feed forward crossbred neural network with parameters p and n input units fed with the input

vector k(x).

The term A(x) contains no adjustable parameters and satisfies the initial condition. The second term F is constructed so as not to

contribute initial condition, since Ψt(x) satisfy them. This term can be formed by using crossbred neural network whose weights

and biases are to be adjusted in order to deal with the minimization problem [3,4].

5. COMPUTATION OF THE GRADIENT

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 45

An efficient minimization of eq.(3) Can be considered as a procedure of training the crossbred neural network, where the error

corresponding to each input vector k(x) is the value E(x) which has to force near zero. Computation of this error value involves

not only the crossbred neural network output but also the derivatives of the output with respect to any of its inputs [3,9].

Considering a multilayer crossbred neural network with n input units, one hidden layer with H sigmoid units and a linear output

unit . The extension to the case of more than one hidden layers can be obtained accordingly.

For a given input vector k(x) = (k(x
1
) , k(x2) , … , k(x

n
)) the output of the crossbred neural network is:

N = ∑ vi s(zi)
H
i=1 (5)

 zi = ∑ wijk(xj) + bi
n
j=1 (6)

wij denotes the weight connecting the input unit j to the hidden unit i,vi denotes the weight connecting the hidden unit i to the

output unit,bi denotes the bias of hidden unit i, and s(z) is the hyperbolic tangent activation function.

The gradient of N with respect to the parameters of the crossbred neural network can be easily obtained as:

∂N

∂vi
 = s(zi)(7)

∂N

∂bi
 = vis´(zi)(8)

∂N

∂wij
 = vis´(zi)k(xj)(9)

Once the derivative of the error with respect to the network parameters has been defined, then it is a straightforward to employ

any minimization technique and we have used BFGS quasi-Newton method (For more details, see [10]) .

6. ILLUSTRATION OF THE METHOD

 To illustrate the proposed method, we consider the first order ordinary differential equation:

dy(x)

dx
 = f(x , y)(10)

where x ∈ [a , b],k(x) ∈(a,b) and the initial condition y(a) = A.

The trial solution can be written as:

yt(x) = A + (x-a) N(k(x) , p)(11)

where N(k(x) , p) is the output of the crossbred neural network with one input unit for k(x) and weights p .

Note that yt(x) satisfies the initial condition by construction. The error function that must be minimized is given by[6,10]:

E[p] = ∑ [
dyt(xi)

dx
 - f(xi , yt(xi))]

2
n
i=1 (12)

where the xiʼs are points in [a , b] and k(xi) are points in (a,b) .

From above, we have :

For a given input vector (k(x1) , k(x
2
) , … , k(xn)) , k(xj) ∈ (a,b) and j=1,2,…,n

The output of the crossbred neural network is:

N = ∑ vi
H
i=1 s (zi) (13)

where

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 46

zi = ∑ wijk(xj) + bi
n
j=1 (14)

 k(xj) = ϵ(xj
3+xj

2+xj + 1), ϵ ∈ (0,1)

where xj ∈ [a , b] and k(xj) ∈ (a , b) , j=1,2,…,n

then the equations (7 − 9) will be :

∂N

∂vi
 = s(wijk(xj) + bi) = s(ϵ (xj

3+xj
2+xj + 1) wij + bi)(15)

∂N

∂bi
 = vis´(wijk(xj) + bi) = vis´(ϵ (xj

3+xj
2+xj + 1) wij + bi)(16)

∂N

∂wij
 =vik(xj)s´(wijk(xj) + bi)

 = ϵ (xj
3+xj

2+xj + 1)
vi

.

s´(ϵ (xj
3+xj

2+xj + 1) wij + bi)(17)

where s´ is the first derivative of the activation function.

𝟕. SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

To find the approximate solution of the first order ordinary differential equations by using the crossbred neural network we use

(1 × m × 1) feed-forward crossbredneural network (Fig. 1) which contains one input unit, m hidden units and one output unit.

.

Fig. (1) (1 × m × 1)feed-forward neural network .

For every entry x the input neuron makes no changes in its input, so the input to the hidden neurons is:

netj =k(x)wj + bj , j = 1,2, …m(18)

where wj is a weight parameter from input layer to the jth unit in the hidden layer, bj is an jth weight bias for the jth unit in the

hidden layer.

 The output, in the hidden neurons is:

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 47

zj = s(netj) , j = 1,2, …m (19)

where s is the hyperbolic tangent activation function. The output neuron make no changes in its input, so the input to the output

neuron is equal to output:

N= ∑ vjzj
m
j=1 (20) where vj is a weight parameter from the jth unit in the hidden layer to the

output layer .

Then the equations (18-20) can be written as :

netj = k(x)wj + bj = ϵ(x3+x2+x+1)wj + bj(21)

zj = s(netj) = s(ϵ(x3+x2+x+1)wj + bj) (22)

N = ∑ vjzj
m
j=1 = ∑ vjs

m
j=1 (ϵ(x3+x2+x+1)wj + bj) (23)

where j = 1,2, …m, and ϵ ∈ (0,1) , k(x) ∈ (a , b).

𝟖. Numerical Example

In the section, we have solved initial value problem with different values of ϵ.We have used a three-layer feed forward crossbred

neural network having one input unit, one hidden layer with 10 hidden units (neurons) and one output unit, and hyperbolic tangent

activation function.

For the numericalproblem, the analytical solution y
a
(x)has been known in advance, therefore we test the accuracy of the obtained

solutions by computing the deviation: ∆y(x) = |y
t
(x) − y

a
(x)|.

To minimize the error function we have used BFGS quasi-Newton method (For more details, see[10]) . The computer programs

which we have used in this work are coded in MATLAB 2015 .

Example (1):Consider the first order initial value problem :

y´(x) = 2y(x) - y2(x) + 1 , withy(0) = 0 and x ∈ [0,1].

The analytical solution for this problem is:

y
a
(x) = 1 + √2tanh (√2 x +

1

2
log (

√2 − 1

√2 + 1
)) .

The trial solution for this problem is :

y
t
(x) = x N(k(x) , p)

The crossbredneural network trained using a grid of ten equidistant points in the interval [0 , 1] ,(i. e.) the input vector x⃗ (training

set) is:

x⃗ = {0 , 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1}.

Now, to find the error function E that must be minimized for this problem, we apply the following steps:

∂yt
(x)

∂x
 = N(k(x) , p) + x

∂N(k(x) ,p)

∂x

and

E = ∑ [
∂yt

(xi)

∂x
− (2y

t
(xi) − (y

t
(xi))

2

+ 1)]
2

11
i=1

then we get

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 48

E=∑ [N(k(x
i
) , p) + xi

∂N(k(xi) ,p)

∂x
− 2 xiN(k(x

i
) , p) + (xiN(k(x

i
) , p))

2

− 1]
2

11
i=1

where

N(k(x) , p) = ∑ vj s
10
j=1 (k(x) wj + bj)

∂N(k(x) ,p)

∂x
 = ∑ ϵ vjwj (3x2 + 2x + 1)s´10

j=1 (k(x) wj + bj)

 since s´(α) = 1 - s2(α) ,

then we get :

∂N(k(x) ,p)

∂x
=∑ (ϵ vjwj (3x2 + 2x + 1) – ϵ vjwj (3x2 + 2x + 1) s2(k(x) wj + bj))

10
j=1

Therefore we have :

E = ∑ [11
i=1 ∑ vjs

10
j=1 (k(xi)wj + bj) + xi ∑ (ϵ vjwj (3x2 + 2x + 1) – ϵ vjwj (3x2 + 2x + 1) s2(k(x) wj + bj))

10
j=1 −

 2xi ∑ vj s
10
j=1 (k(xi)wj + bj) + (xi ∑ vj s

10
j=1 (k(xi)wj + bj))

2 − 1]2 .

(24)

Then we use (24) to update the weights and biases .

Suhhiem in [10] solved this problem by using usual neural network, in this work we solved this problem with four values of ϵand

then we compared the results in this work with the result in [10] to show the accuracy of the proposed method .

Analytical and trial solutions for this problem can be found in table (1),table(2),table(3) and table(4) .

9. CONCLUSION

In this work, we have introduced a modified method to find the numerical solution of the first order ordinary differential

equations. This method based on crossbred neural network to approximate the solution of the first order initial value problems.

The crossbred neural network based on replacing each element in the training set by a polynomial of third degree, This

polynomial is defined as: k(x) = ϵ(x3 + x
2
+ x + 1), ϵ ∈ (0,1).in this method we test different values for ϵ in the interval (0,1)

which contains many infinitely suitable and not suitable chosen values for ϵ .Therefore, the accuracy of the results depends on the

chosen value of ϵ . For future studies, one can extend this method to find a numerical solution of the higher order ordinary

differential equations. Also, one can use this method for solving partial differential equation.

REFERENCES

 [1] Lee H. , Kang I. S. , "Neural Algorithms For Solving Differential Equations" , Journal of Computational Physics , 91 ,110-
131,1990 .

[2] Meade A. J. , Fernandes A. A. ,"The Numerical Solution of Linear Ordinary Differential Equations by Feed-Forward Neural
Networks" , Mathematical and Computer Modelling , Vol. 19 , No. 12 , 1-25 , 1994.

 [3] Meade A. J. , Fernandes A. A. ," Solution of Nonlinear Ordinary Differential Equations by Feed-Forward Neural Networks" ,
Mathematical and Computer Modelling , Vol. 20 , No. 9 , 19-44 , 1994 .

 [4] Lagaris I. E. , Likas A. , et al. ,"Artificial Neural Networks For Solving Ordinary and Partial Differential Equations", Journal
of Computational Physics, 104 , 1-26 , 1997 .

 [5] Liu B. , Jammes B. ,"Solving Ordinary Differential Equations by Neural Networks" , Warsaw , Poland , 1999 .

[6] Tawfiq L. N. M. ,"On Design and Training of Artificial Neural Network For Solving Differential Equations",Ph.D. Thesis ,
College of Education Ibn AL-Haitham,University of Baghdad , Iraq , 2004 .

[7] Malek A. , Shekari R. ,"Numerical Solution For High Order Differential Equations by Using a Hybrid Neural Network
Optimization Method " ,Applied Mathematics and Computation, 183 , 260-271 , 2006 .

[8] Pattanaik S. , Mishra R. K. ,"Application of ANN For Solution of PDE in RF Engineering",International Journal on
Information Sciences and Computing , Vol. 2 , No. 1 , 74-79, 2008 .

[9] Baymani M. , Kerayechian A. , et al. ,"Artificial Neural Networks Approach For Solving Stokes Problem" , Applied
Mathematics , 1 , 288-292,2010 .

 [10] Suhhiem M. H. ,"Fuzzy Artificial Neural Network For Solving Fuzzy and Non-Fuzzy Differential Equations ",Ph.D. Thesis
, College of Sciences, AL-Mustansiriyah University, Iraq , 2016 .

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 49

Table (1): Numerical result for example (1)

x ya(x) yt(x),ϵ = 0.25 error yt(x) in[10] error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.110295196

0.241976799

0.395104848

0.567812166

0.756014393

0.953566216

1.152948967

1.346363655

1.526911313

1.689498392

0

0.110294331

0.241976056

0.395104229

0.567807230

0.756010753

0.953556801

1.152948182

1.346362694

1.526911084

1.689497500

0

8.6553e-7

7.4322e-7

6.1966e-7

4.9369e-6

3.6408e-6

9.4150e-6

7.8532e-7

9.6157e-7

2.2967e-7

8.9214e-7

0

0.110293475

0.241970548

0.395104269

0.567802288

0.756011576

0.953493355

1.152913777

1.3462634330

1.526859080

1.689452714

0

1.7210e-6

6.2510e-6

0.5790e-6

9.8780e-6

2.8170e-6

7.2861e-5

3.5190e-5

1.0022e-4

5.2233e-5

4.5678e-5

Table (2): Numerical result for example (1)

x ya(x) yt(x),ϵ = 0.45 error yt(x) in[10] error

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.110295196

0.241976799

0.395104848

0.567812166

0.756014393

0.953566216

1.152948967

1.346363655

1.526911313

1.689498392

0

0.110294711

0.241976096

0.395103899

0.567812031

0.756014279

0.953565807

1.152948535

1.346362960

1.526910613

1.689498112

0

4.8521e-7

7.0382e-7

9.4977e-7

1.3598e-7

1.1405e-7

4.0926e-7

4.3226e-7

6.9511e-7

7.0059e-7

2.8040e-7

0

0.110293475

0.241970548

0.395104269

0.567802288

0.756011576

0.953493355

1.152913777

1.3462634330

1.526859080

1.689452714

0

1.7210e-6

6.2510e-6

0.5790e-6

9.8780e-6

2.8170e-6

7.2861e-5

3.5190e-5

1.0022e-4

5.2233e-5

4.5678e-5

Table (3): Numerical result for example (1)

x ya(x) yt(x),ϵ = 0.65 error yt(x) in[10] error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.110295196

0.241976799

0.395104848

0.567812166

0.756014393

0.953566216

1.152948967

1.346363655

1.526911313

1.689498392

0

0.110295110

0.241976755

0.395104757

0.567812141

0.756013978

0.953566025

1.152948219

1.346362946

1.526911229

1.689498314

0

8.6773e-8

4.4179e-8

9.1638e-8

2.5566e-8

4.1535e-7

1.9190e-7

7.4858e-7

7.0991e-7

8.4950e-8

7.8303e-8

0

0.110293475

0.241970548

0.395104269

0.567802288

0.756011576

0.953493355

1.152913777

1.3462634330

1.526859080

1.689452714

0

1.7210e-6

6.2510e-6

0.5790e-6

9.8780e-6

2.8170e-6

7.2861e-5

3.5190e-5

1.0022e-4

5.2233e-5

4.5678e-5

Table (4): Numerical result for example (1)

x ya(x) yt(x),ϵ = 0.85 error yt(x) in[10] error

Mazin Hashim Suhhiem , Journal of Global Research in Mathematical Archives, 6(3), March 2019, 43-51

© JGRMA 2019, All Rights Reserved 51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.110295196

0.241976799

0.395104848

0.567812166

0.756014393

0.953566216

1.152948967

1.346363655

1.526911313

1.689498392

0

0.110286055

0.241968385

0.395096346

0.567802605

0.756007523

0.953480016

1.152878518

1.346304977

1.526906124

1.689493801

0

9.1419e-6

8.4149e-6

8.5023e-6

9.5614e-6

6.8704e-6

8.6200e-5

7.0449e-5

5.8678e-5

5.1894e-6

4.5912e-6

0

0.110293475

0.241970548

0.395104269

0.567802288

0.756011576

0.953493355

1.152913777

1.3462634330

1.526859080

1.689452714

0

1.7210e-6

6.2510e-6

0.5790e-6

9.8780e-6

2.8170e-6

7.2861e-5

3.5190e-5

1.0022e-4

5.2233e-5

4.5678e-5

