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Abstract: In this work, anovel numerical method based on crossbred neural networkis proposed to solve the first order ordinary differential 

equation. Here crossbred neural network is considered as a part of large field called neural computing or soft computing. The crossbred feed 

forward neural network based on replacing each element in the training set by a polynomial of third degree.  The model finds the approximated 

solution of the first orderinitial value problems inside its domain for the close enough neighborhood of the initial point. Thismethod, in 

comparison with existing numerical methods, shows that the use of crossbred neural networks provides solutions with good generalization and 

high accuracy. 
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1. INTRODUCTION 

Many methods have been developed so far for solving ordinary differential equations since it is utilized widely for the purpose of 

modeling problems in science and engineering. 

 Most of the practical problems require the solution of the ordinary differential equation which satisfies initial conditions , 

therefore, the ordinary differential equation must be solved .Many ordinary differential equation could not be solved exactly ,thus  

considering their approximate solutions is becoming more important. 

In 1990 researchers began using  artificial neural network (ANN) for solving ordinary differential equation such as :   lee , Kang in 

[1]; Meade , Fernandez in [2,3] ;Lagaris , Likasin [4] ; Liu ,Jammes in [5] ; Tawfiq in [6] ;malek , shekari in [7] ; Pattanaik  , 

Mishra in [8];Baymani  ,Kerayechian in [9] ;Suhhiem in[10] and other researchers . 

In this work, we have used crossbred feed forward artificial neural network to find the numerical solution of the first order initial 

value problems. The crossbred neural network based on replacing each element in the training set by a polynomial of third degree. 

This polynomial can be written as: k(x) = ϵ(x3 + x2 + x + 1), ϵ ∈ (0,1). 

 in this method we test different values for ϵ  in the interval (0,1) which contains many infinitely suitable and not suitable chosen 

values for ϵ .Therefore,finding the suitable value of ϵ is not easily .Our numerical results showed that this method is better and 

much accuracy in comparison with other numerical  methods.     In general, the modified method  in this work iseffective for 

solving the first order ordinary differential equation. 

In the proposed method, the crossbred neural network model is applied as universal approximator . We use trial function, this trial 

function is a combination of two terms. The first term is responsible for the initial condition while the second term contains the 

crossbred neural network adjustable parameters to be calculated. Our crossbred neural network is a three-layer feed forward neural 

network where the connections weights, biases and inputs are given as real numbers. 

The trial solution of the first order initial value problem is written as a sum of two parts. The first part satisfies the initial 

condition, it contains no adjustable parameters. While the second part involves crossbred feed-forward neural networks which 

containing adjustable parameters. 

2. ARTIFICIAL NEURAL NETWORK  
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Artificial neural networks are learning machines that can learn any arbitrary functional mapping between input and output. They 

are fast machines and can be implemented in parallel, either in software or in hardware. In fact, the computational complexity of 

ANN is polynomial in the number of neurons used in the network .Parallelism also brings with it the advantages of robustness and 

fault tolerance. 

(i.e.) ANN is a simplified mathematical model of the human brain. It can be implemented by both electric elements and computer 

software. It is a parallel distributed processor with large numbers of connections It is an information processing system that has 

certain performance characters in common with biological neural networks[1,2]. 

3. CROSSBRED NEURAL NETWORK  

 In this section , we  introduce a novel method to modify the artificial neural networks .This new method is based on replacing 

each x in the input vector (training set)x⃗  = (x1 , x2 , … , xn) , xj ∈ [a, b] by a polynomial of third degree .                          .      

We have used the function: 

k(x) = ϵ(x3 + x2 + x + 1), ϵ ∈ (0,1). 

Then the input vector will be: 

(k(x1) , k(x2) , … ,  k(xn)), k(xj) ∈ (a , b) and  j=1,2,…,n  

Using crossbred neural network makes that training points should be selected over the open interval (a , b) without training the 

neural network in the range of first and end points. Therefore, the calculating volume involving computational error is reduced. In 

fact, the training points depending on the distance [a , b] selected for training neural network are converted to similar points in the 

open interval (a , b) by using the new approach, then the network is trained in these similar areas [10].  

4. DESCRIPTION of THE METHOD 

In this section we illustrate how the proposed method can be used to find the approximate solution of the first order ordinary 

differential equation:  

G(x , Ψ(x) , ∇ Ψ(x) , ∇2 Ψ(x), … ) = 0 ,  x ∈ D(1) 

Wherex = (x1, x2 , … , xn) ∈ Rn , D ⊂ Rndenotes the domain and Ψ(x) is the computed solution.  

To obtain a solution to the above differential equation, the collocation method is adopted which assumes a discretization of the 

domain D  into a set points D̂ . The problem is then transformed into the following system of equations: 

G(xi , Ψ(xi) , ∇ Ψ(xi) , ∇
2 Ψ(xi), … ) = 0       ,∀ xi ∈ D̂ (2) 

If Ψt(xi , p) denotes a trial solution with adjustable parameters p, the problem is transformed to a discretize form : 

min
p

∑ (G(xi, Ψt(xi, p ), ∇ Ψt(xi, p), ∇
2Ψt(xi, p), … ))

2

xi ∈ D̂ (3) 

The trial solution Ψt employs a feed forward crossbredneural network and the parameters p correspond to the weights and biases 

of the neural architecture . We choose a form for the trial function Ψt(x) such that it satisfies the initial condition. This is achieved 

by writing it as a sum of two terms.  

                  Ψt(x) =A(x) + F(x , N(k(x) , p))(4) 

where N(k(x) , p) is a single-output feed forward crossbred neural network with parameters p and n input units fed with the input 

vector k(x). 

The term A(x) contains no adjustable parameters and satisfies the initial condition. The second term F is constructed so as not to 

contribute initial condition, since Ψt(x) satisfy them. This term can be formed by using crossbred neural network whose weights 

and biases are to be adjusted in order to deal with the minimization problem [3,4]. 

5.  COMPUTATION OF THE GRADIENT 
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An efficient minimization of eq.(3) Can be considered as a procedure of training the crossbred neural network, where the error 

corresponding to each input vector k(x) is the value E(x ) which has to force near zero. Computation of this error value involves 

not only the crossbred neural network output but also the derivatives of the output with respect to any of its inputs [3,9].  

Considering a multilayer crossbred neural network with n input units, one hidden layer with H sigmoid units and a linear output 

unit . The extension to the case of more than one hidden layers can be obtained accordingly.  

For a given input vector k(x) = (k(x
1
) , k( x2) , … , k(x

n
)) the output of the crossbred neural network is:  

N = ∑ vi s(zi)
H
i=1                                                         (5)                                                                                                                                           

        zi = ∑ wijk(xj) + bi
n
j=1                        (6)                    

wij denotes the weight connecting the input unit j to the hidden unit i,vi denotes the weight connecting the hidden unit i to the 

output unit,bi denotes the bias of hidden unit i, and   s(z) is the hyperbolic tangent activation function.   

The gradient of N with respect to the parameters of the crossbred neural network can be easily obtained as:  

∂N

∂vi
 = s(zi)(7) 

∂N

∂bi
 = vis´(zi)(8) 

∂N

∂wij
 = vis´(zi)k(xj)(9) 

Once the derivative of the error with respect to the network parameters has been defined, then it is a straightforward to employ 

any minimization technique and we have used BFGS quasi-Newton method (For more details, see [10]) . 

6. ILLUSTRATION OF THE METHOD 

 To illustrate the proposed method, we consider the first order ordinary differential equation: 

dy(x)

dx
 = f(x , y)(10) 

where  x ∈ [a , b],k(x) ∈(a,b) and the initial condition y(a) = A. 

The trial solution can be written as:  

yt(x) = A + (x-a) N(k(x) , p)(11) 

where N(k(x) , p ) is the output of the crossbred neural network with one input unit for k(x) and weights  p . 

Note that yt(x) satisfies the initial condition by construction. The error function that must be minimized is given by[6,10]:  

E[p] = ∑ [
dyt(xi)

dx
 - f(xi , yt(xi))]

2
n
i=1                                 (12) 

where the xiʼs are points in [a , b] and k(xi) are points in (a,b) . 

From above, we have :  

For a given input vector (k(x1) , k(x
2
) , … , k( xn)) , k(xj) ∈ (a,b) and j=1,2,…,n  

The output of the crossbred neural network is:  

N = ∑ vi
H
i=1  s (zi)   (13) 

where 
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zi = ∑ wijk(xj) + bi
n
j=1   (14)                           

   k(xj) = ϵ(xj
3+xj

2+xj + 1), ϵ ∈ (0,1) 

where   xj ∈ [a , b] and  k(xj) ∈ (a , b)  , j=1,2,…,n                                                                                                                                                                                                                   

then the equations (7 − 9) will be :  

∂N

∂vi
 = s(wijk(xj) + bi) = s(ϵ (xj

3+xj
2+xj + 1) wij + bi)(15) 

∂N

∂bi
 = vis´(wijk(xj) + bi) = vis´(ϵ (xj

3+xj
2+xj + 1) wij + bi)(16) 

∂N

∂wij
 =vik(xj)s´(wijk(xj) + bi) 

 =  ϵ (xj
3+xj

2+xj + 1)
vi

.

s´(ϵ (xj
3+xj

2+xj + 1) wij + bi)(17) 

where s´ is the first derivative of the  activation function.  

𝟕. SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS  

To find the approximate solution of the first order ordinary differential equations by using the crossbred neural network we  use 

(1 × m × 1) feed-forward crossbredneural network (Fig. 1) which contains one input unit, m hidden units and one output unit.  

. 

Fig. (1) (1 × m × 1)feed-forward neural network . 

 

For every entry x the input neuron makes no changes in its input, so the input to the hidden neurons is: 

netj =k(x)wj + bj ,     j = 1,2, …m(18) 

where wj is a weight parameter from input layer to the jth unit in the hidden layer, bj is an jth weight bias for the jth unit in the 

hidden layer. 

 The output, in the hidden neurons is: 
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zj = s(netj) ,     j = 1,2, …m                      (19) 

where s is the hyperbolic tangent activation function. The output neuron make no changes in its input, so the input to the output 

neuron is equal to output:  

N= ∑ vjzj
m
j=1                                              (20)                   where vj is a weight parameter from the jth unit in the hidden layer to the 

output layer .  

Then the equations (18-20) can be written as : 

netj = k(x)wj + bj = ϵ(x3+x2+x+1)wj + bj(21) 

zj = s(netj) = s(ϵ(x3+x2+x+1)wj + bj)  (22)                    

N = ∑ vjzj
m
j=1  = ∑ vjs

m
j=1 (ϵ(x3+x2+x+1)wj + bj)  (23)                

where   j = 1,2, …m, and ϵ ∈ (0,1) , k(x) ∈ (a , b). 

𝟖. Numerical Example 

In the section, we have solved initial value problem with different values of  ϵ.We have used a three-layer feed forward crossbred 

neural network having one input unit, one hidden layer with 10 hidden units (neurons) and one output unit, and hyperbolic tangent 

activation function. 

For the numericalproblem, the analytical solution y
a
(x)has been known in advance, therefore we test the accuracy of the obtained 

solutions by computing the deviation:     ∆y(x) = |y
t
(x)  −  y

a
(x)|. 

To minimize the error function we have used BFGS quasi-Newton method (For more details, see[10]) . The computer programs 

which we have  used in this work are coded in MATLAB 2015 . 

Example (1):Consider the first order initial value problem :  

y´(x) = 2y(x) - y2(x) + 1  , withy(0) = 0  and x ∈ [0,1]. 

The analytical solution for this problem is:  

y
a
(x) = 1 + √2tanh (√2 x +  

1

2
log (

√2 − 1

√2 + 1
)) . 

The trial solution for this problem is : 

y
t
(x) = x N(k(x) , p) 

The crossbredneural network trained using a grid of ten equidistant points in the interval [0 , 1] ,(i. e. ) the input vector x⃗ (training 

set) is:  

x⃗  = {0 , 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1}. 

Now, to find the error function E that must be minimized for this problem, we apply the following steps: 

 

∂yt
(x)

∂x
 =  N(k(x) , p) + x

∂N(k(x) ,p)

∂x
 

and 

E = ∑ [
∂yt

(xi)

∂x
− (2y

t
(xi)  − (y

t
(xi))

2

+  1)]
2

11
i=1  

then we get 
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E=∑ [N(k(x
i
) , p)  +  xi

∂N(k(xi) ,p)

∂x
−  2 xiN(k(x

i
) , p)  + (xiN(k(x

i
) , p))

2

−  1]
2

11
i=1  

where 

N(k(x) , p) = ∑ vj s
10
j=1 (k(x) wj  +  bj) 

∂N(k(x) ,p)

∂x
 = ∑  ϵ vjwj (3x2 + 2x + 1)s´10

j=1 (k(x) wj  +  bj) 

 since s´(α) = 1 - s2(α) ,  

then we get : 

∂N(k(x) ,p)

∂x
=∑ ( ϵ vjwj (3x2 + 2x + 1) –  ϵ vjwj (3x2 + 2x + 1) s2(k(x) wj  +  bj))

10
j=1  

Therefore we have : 

E = ∑ [11
i=1 ∑ vjs

10
j=1 (k(xi)wj  +  bj)  +  xi ∑ ( ϵ vjwj (3x2 + 2x + 1) –  ϵ vjwj (3x2 + 2x + 1) s2(k(x) wj  +  bj))

10
j=1 −

 2xi ∑ vj s
10
j=1  (k(xi)wj  +  bj) +  (xi ∑ vj s

10
j=1  (k(xi)wj  +  bj))

2 −  1]2   .                                                                                                            

(24) 

Then we use (24) to update the weights and biases . 

Suhhiem in [10] solved this problem by using usual neural network, in this work we solved this problem with four values of ϵand 

then we compared the results in this work with the result in [10] to show the accuracy of the proposed method . 

Analytical and trial solutions for this problem can be found in table (1),table(2),table(3) and table(4) . 

9. CONCLUSION  

In this work, we have introduced a  modified method  to find the numerical solution of the first order ordinary differential 

equations. This method based on crossbred neural network to approximate the solution of  the first order initial value problems. 

The crossbred neural network  based on replacing each element in the training set  by a polynomial of third degree, This 

polynomial is defined as: k(x) = ϵ(x3 + x
2
+ x + 1), ϵ ∈ (0,1).in this method we test different values for ϵ  in the interval (0,1) 

which contains many infinitely suitable and not suitable chosen values for ϵ .Therefore, the accuracy of the results depends on the 

chosen value of ϵ . For future studies, one can  extend this method to find a numerical solution of the higher order ordinary 

differential equations. Also, one can use this method for solving  partial  differential equation. 
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Table (1): Numerical result for example (1) 

x ya(x) yt(x),ϵ = 0.25 error yt(x) in[10] error 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.110295196 

0.241976799 

0.395104848 

0.567812166 

0.756014393 

0.953566216 

1.152948967 

1.346363655 

1.526911313 

1.689498392 

0 

0.110294331 

0.241976056 

0.395104229 

0.567807230 

0.756010753 

0.953556801 

1.152948182 

1.346362694 

1.526911084 

1.689497500 

0 

8.6553e-7 

7.4322e-7 

6.1966e-7 

4.9369e-6 

3.6408e-6 

9.4150e-6 

7.8532e-7 

9.6157e-7 

2.2967e-7 

8.9214e-7 

0 

0.110293475 

0.241970548 

0.395104269 

0.567802288 

0.756011576 

0.953493355 

1.152913777 

1.3462634330 

1.526859080 

1.689452714 

0 

1.7210e-6 

6.2510e-6 

0.5790e-6 

9.8780e-6 

2.8170e-6 

7.2861e-5 

3.5190e-5 

1.0022e-4 

5.2233e-5 

4.5678e-5 

Table (2): Numerical result for example (1) 

x ya(x) yt(x),ϵ = 0.45 error yt(x) in[10] error 
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0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.110295196 

0.241976799 

0.395104848 

0.567812166 

0.756014393 

0.953566216 

1.152948967 

1.346363655 

1.526911313 

1.689498392 

0 

0.110294711 

0.241976096 

0.395103899 

0.567812031 

0.756014279 

0.953565807 

1.152948535 

1.346362960 

1.526910613 

1.689498112 

0 

4.8521e-7 

7.0382e-7 

9.4977e-7 

1.3598e-7 

1.1405e-7 

4.0926e-7 

4.3226e-7 

6.9511e-7 

7.0059e-7 

2.8040e-7 

0 

0.110293475 

0.241970548 

0.395104269 

0.567802288 

0.756011576 

0.953493355 

1.152913777 

1.3462634330 

1.526859080 

1.689452714 

0 

1.7210e-6 

6.2510e-6 

0.5790e-6 

9.8780e-6 

2.8170e-6 

7.2861e-5 

3.5190e-5 

1.0022e-4 

5.2233e-5 

4.5678e-5 

 

Table (3): Numerical result for example (1) 

x ya(x) yt(x),ϵ = 0.65 error yt(x) in[10] error 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.110295196 

0.241976799 

0.395104848 

0.567812166 

0.756014393 

0.953566216 

1.152948967 

1.346363655 

1.526911313 

1.689498392 

0 

0.110295110 

0.241976755 

0.395104757 

0.567812141 

0.756013978 

0.953566025 

1.152948219 

1.346362946 

1.526911229 

1.689498314 

0 

8.6773e-8 

4.4179e-8 

9.1638e-8 

2.5566e-8 

4.1535e-7 

1.9190e-7 

7.4858e-7 

7.0991e-7 

8.4950e-8 

7.8303e-8 

0 

0.110293475 

0.241970548 

0.395104269 

0.567802288 

0.756011576 

0.953493355 

1.152913777 

1.3462634330 

1.526859080 

1.689452714 

0 

1.7210e-6 

6.2510e-6 

0.5790e-6 

9.8780e-6 

2.8170e-6 

7.2861e-5 

3.5190e-5 

1.0022e-4 

5.2233e-5 

4.5678e-5 

Table (4): Numerical result for example (1) 

x ya(x) yt(x),ϵ = 0.85 error yt(x) in[10] error 
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0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.110295196 

0.241976799 

0.395104848 

0.567812166 

0.756014393 

0.953566216 

1.152948967 

1.346363655 

1.526911313 

1.689498392 

0 

0.110286055 

0.241968385 

0.395096346 

0.567802605 

0.756007523 

0.953480016 

1.152878518 

1.346304977 

1.526906124 

1.689493801 

0 

9.1419e-6 

8.4149e-6 

8.5023e-6 

9.5614e-6 

6.8704e-6 

8.6200e-5 

7.0449e-5 

5.8678e-5 

5.1894e-6 

4.5912e-6 

0 

0.110293475 

0.241970548 

0.395104269 

0.567802288 

0.756011576 

0.953493355 

1.152913777 

1.3462634330 

1.526859080 

1.689452714 

0 

1.7210e-6 

6.2510e-6 

0.5790e-6 

9.8780e-6 

2.8170e-6 

7.2861e-5 

3.5190e-5 

1.0022e-4 

5.2233e-5 

4.5678e-5 

 


