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Abstract

In this paper, we work on (s,Q) inventory queuing system for providing two types of customers
services, namely high priority customer and low priority customer, with one basic server interruption
and a standby server replaces whenever the basic server gets interruption. The high priority customer
demands a unit item along with some services and the low priority customer demands only the services
(on the used item) but not purchasing the item at that time. The high priority customers are allowed
in the queue with finite capacity waiting hall and low priority customers allowed in the finite orbit with
retrial policy when the server is busy, otherwise, the customer is lost. Also, in this discussion, the server
can go in orbit search of customers immediately after either the inventory is stocked out or there is
no queue. The customers’ arrivals of both types follow Poisson processes and the times of both the
services follow the exponential distributions while the interruption times and the stand-by service times
are exponentially distributed. Finally, the system performance measures are derived in the steady states.

Keywords: Continuous review, Perishable commodity, Heterogeneous servers, Standby server.

1 Introduction

In many real life situations, the demanded item cannot be delivered immediately due to the installation or
demonstration or the upgrading some facilities and hence we require some positive service time, eventually
this leads to build a waiting hall for the customers. Berman and Kim [1] analyzed an inventory queuing
problem under the assumption of arrival of customers follows a Poisson process and the service times are
exponentially distributed in which mean inter arrival time is larger than the mean service time. Berman
and Sapna [2] studied an inventory queuing problem under the assumptions of Poisson arrivals, arbitrarily
distributed service times, zero lead times and finite capacity of waiting room. They determine the optimal
ordering quantity based on the given cost structure, derived from the minimum long run expected cost
per unit time. Further, Elango [3], he studied the Markovian inventory system along with service facility
and instantaneous replenishment of orders. The service time assumed to be exponential distribution with
the rate depending on the queue length. Arivarignan et al. [4] studied the same problem with exponential
lead time. In Sivakumar and Arivarignan [5], they worked the inventory problem with exponential service
and lead times but the demand of an item is arbitrarily distributed.

Also, when the server is busy, the customers may allow in a retrial orbit and repeated attempt to
capture the free server after a random amount of time. This model is known as a retrial queuing model.
This is extensively studied by many authors. With the reference of the books of Falin and Templeton
[6] and Artalejo and Gomez Corral [7], they analyze the both theory and applications on retrial queues
which is useful to the readers. In Artalejo et. al [8], first studied this inventory model with positive lead
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time for retrying the orbiting customer to get unsatisfied demand in algorithmic approach. Ushakumari [9]
derived the analytical solution to the same model. In many situations we can find out the different classes
of people to get the different quality of services. Under non-preemptive discipline, high priority customer
is allowed in a queue when a low priority customer is in the server and low priority customer goes into a
retrial orbit when the server is busy. A non pre-emptive retrial queuing model is first investigated by Choi
and Park [10]. They allowed the retrial queue for both priority and ordinary customers under the priority
customer have non pre-emptive priority over ordinary customers and queued in FCFS. In Krishnamoorthy
and Jose [11], the authors studied the inventory (s, S) system with an orbit size infinite. They considered
a waiting hall for fresh customers with finite capacity and the orbit used only for retrial customers. The
inflow and outflow rate of retrying customers in the orbit and the length of queue are considered to be
independent. In Krishnamoorthy and Islam [12], Sivakumar and Arivarignan [13] and Paul Manuel et al.
[14], all these inventory retrail queuing model, the selection time between the pooled customers is according
to exponential distribution.

In this paper, we work on a continuous (s, S) inventory - queuing system with high priority and low
priority customers. The arrivals and services of both the customers are heterogeneous types. One basic
server and one standby server are used in the model. A finite capacity waiting hall and a finite capacity
orbit queue are respectively used for high and low priorty customers. Orbit search used for low priority
customers with non-pre-emptive priority service policy. This helps to minimize the ideal time of the server.

The paper is organized as follows. In section 2, the mathematical model and the notations are defined.
Section 3 gives the analysis of the model and the steady state solution of the model. The various system
performance measures are given in section 4.

2 Mathematical Model and Notations

In this model, we consider the high priority customers(HPC) who purchase the product along with services
which may include the installation or demonstration of how to use the product or upgrading the additional
facilities and the low priority customers(LPC) is only provided the services which includes the maintenance,
or repair or upgrading but not purchasing the product. We observe that the number of arrivals of both
high and low priority customers follow Poisson processes and servicing times of both high and low priority
customers are exponentially distributed. Let λ1 and µ1 are the arrival rate and service rate of the high
priority customers and λ2 and µ2 are the arrival rate and service rate of the low priority customers
respectively.
In this model, we discuss the two types of servers, namely basic server and standby server. We assume
that the interruption may occur only the basic server with the rate η and the completion of interruption
with the rate α. The times of both these occurrences follow exponential distributions. We assume that
the basic server is only providing the services till the interruption occurs. The standby server can also be
used when the basic server has an interruption.
In this model, the waiting hall with finite capacity, say N , is only used for high priority customers. The
high priority customer is lost when the hall is full.
In this model, retrial policy only used for low priority customers in the finite orbit, say M . Assume the
inter-retrial times of repeated attempts of the low priority customer demand for free server follows the
exponential distribution with the rate θ, the corresponding rate of demand of customers in the orbit is jθ
when the orbit size is j. This is known as the classical retrial policy.
In this model, under non-pre-emptive priority service policy, the basic server can also search the orbiting
customer for providing service with the probability r and 1-r is the corresponding probability of ideal of
basic server. This is the case whenever there is no customer in the waiting hall or the inventories are
stocked out.
In this model, we work on a continuous review inventory system and the ordering policy is (s, S). The
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small letter s denotes the reorder level and the capital letter S denotes the maximum inventory level of
the system. Assume q be the fixed order quantity with instantaneous replenishment given by q = S − s
and the lead time occur with the rate β, where the lead time is the time gap between the placing the order
and receiving the order.

2.1 Notations:

Ik = an identity matrix of order k

e = (1, 1, . . . , 1)T

[C]ij = entry at (i, j)th position of a matrix C

a ∈ V j
i = a = i, i+ 1, . . . j

k
Ω
i=r

yi =

{
yryr−1 · · · yk if r ≥ k
1 if r < k

δxy =

{
1 if x = y
0 otherwise

¯δxy = 1− δxy

H(a) =

{
1 if a ≥ 0
0 otherwise

3 Analysis of the Model

At time t ≥ 0, the state of the system can be expressed by the stochastic process y(t) = {(y1(t), y2(t), y3(t), y4(t))},
where y1(t) means inventory level at time t, y2(t) means server’s status at time t, it is defined as follows:

y2(t) =



0, if Both servers are free at time t,
1, if Basic server is busy with HPC and standby server is free at time t,
2, if Basic server is on interruption and standby server is busy with HPC at time t,
3, if Basic server is busy with LPC and standby server is free at time t,
4, if Basic server is on interruption and standby server is busy with LPC at time t,
5, if Basic server is on interruption and standby server is free at time t,

y3(t) means number of HPC in the queue at time t and y4(t) means number of LPC in the queue at time
t. The state space of the model is A = a1 ∪ a2 ∪ a3 ∪ a4 ∪ a5 ∪ a6 ∪ a7 ∪ a8 ∪ a9 ∪ a10, where

a1 = {(0, 0, j3, j4) | 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a2 = {(j1, 0, 0, j4) | 1 ≤ j1 ≤ S; 0 ≤ j4 ≤M},
a3 = {(j1, 1, j3, j4) | 1 ≤ j1 ≤ S; 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a4 = {(j1, 2, j3, j4) | 1 ≤ j1 ≤ S; 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a5 = {(0, 3, j3, j4) | 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a6 = {(j1, 3, j3, j4) | 1 ≤ j1 ≤ S; 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a7 = {(0, 4, j3, j4) | 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a8 = {(j1, 4, j3, j4) | 1 ≤ j1 ≤ S; 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a9 = {(0, 5, j3, j4) | 0 ≤ j3 ≤ N ; 0 ≤ j4 ≤M},
a10 = {(j1, 5, 0, j4) | 1 ≤ j1 ≤ S; 0 ≤ j4 ≤M}

The set of states in the level (0) is denoted by (0) = a1 ∪ a5 ∪ a7 ∪ a9. The set of states in the level (j1),
1 ≤ j1 ≤ S, is denoted by (j1) = a2 ∪ a3 ∪ a4 ∪ a6 ∪ a8 ∪ a10.
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Then the rate matrix of y(t) = {(y1(t), y2(t), y3(t), y4(t))} is given by

Γ =

(S)
(S − 1)

...
(s+ 1)

(s)
(s− 1)

...
(2)
(1)
(0)



Ω2 ∆2

Ω2 ∆2

· · ·
· · · Ω2 ∆2

Ψ Ω1 ∆2

Ψ Ω1

· · · · · ·
Ψ · · · Ω1 ∆2

Ψ Ω1 ∆1

Ψ1 Ω0


where the matrices ∆1, Ψ1 and Ω0 are of dimention (M + 1)(4(N + 1) + 2) × 4(N + 1)(M + 1), 4(N +
1)(M + 1)× (M + 1)(4(N + 1) + 2) and 4(N + 1)(M + 1)× 4(N + 1)(M + 1) and other matrices Ω1, Ω2,
∆2 and Ψ are of dimention (M + 1)(4(N + 1) + 2)× (M + 1)(4(N + 1) + 2).

The elements of the sub-matrices of Γ can be described as followes:

Ψ1 =



β, k1 = Q, k2 = j2, k3 = j3, k4 = j4,
j1 = 0, j2 = 0, j3 = 0, j4 ∈ VM

1 ,

k1 = Q, k2 = 1, k3 = j3 − 1, k4 = j4,
j1 = 0, j2 = 0, j3 ∈ V N

1 , j4 ∈ VM
0 ,

k1 = Q, k2 = j2, k3 = j3, k4 = j4,
j1 = 0, j2 ∈ V 5

3 , j3 ∈ V N
0 , j4 ∈ VM

0 ,
0, otherwise.

Ψ = β × I(M+1)(4(N+1)+2)

∆1 =



µ1, k1 = 0, k2 = 0, k3 = j3, k4 = j4,
j1 = 1, j2 = 1, j3 ∈ V N

0 , j4 = 0,

k1 = 0, k2 = 5, k3 = j3, k4 = j4,
j1 = 1, j2 = 2, j3 ∈ V N

0 , j4 ∈ VM
0 ,

rµ1, k1 = 0, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 = 1, j2 = 1, j3 ∈ V N

0 , j4 ∈ VM
1 ,

(1− r)µ1, k1 = 0, k2 = 0, k3 = j3, k4 = j4,
j1 = 1, j2 = 1, j3 ∈ V N

0 , j4 ∈ VM
1 ,

0, otherwise.

M. Bhuvnashwari et al, Journal of Global Research in Mathematical Archives, 6(4), April, 2019, 01-11

© JGRMA 2019, All Rights Reserved                                                                                                                                                                                                                                                                                 4



∆2 =



µ1, k1 = j1 − 1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

2 , j2 = 1, j3 = 0, j4 = 0,

k1 = j1 − 1, k2 = j2, k3 = j3 − 1, k4 = j4,
j1 ∈ V S

2 , j2 = 1, j3 ∈ V N
1 , j4 ∈ VM

0 ,

k1 = j1 − 1, k2 = 5, k3 = j3, k4 = j4,
j1 ∈ V S

2 , j2 = 2, j3 = 0, j4 ∈ VM
0 ,

k1 = j1 − 1, k2 = j2, k3 = j3 − 1, k4 = j4,
j1 ∈ V S

2 , j2 = 2, j3 ∈ V N
1 , j4 ∈ VM

0 ,

rµ1, k1 = j1 − 1, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 ∈ V S

2 , j2 = 1, j3 = 0, j4 ∈ VM
1 ,

(1− r)µ1, k1 = j1 − 1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

2 , j2 = 1, j3 = 0, j4 ∈ VM
1 ,

0, otherwise.

Ω0 =



λ1, k1 = j1, k2 = j2, k3 = j3 + 1, k4 = j4,

j1 = 0, j2 = 0, 3, 4, 5, j3 ∈ V N−1
0 , j4 ∈ VM

0 ,

λ2, k1 = j1, k2 = 3, k3 = j3, k4 = j4,
j1 = 0, j2 = 0, j3 ∈ V N

0 , j4 ∈ VM
0 ,

k1 = j1, k2 = j2, k3 = j3, k4 = j4 + 1,

j1 = 0, j2 = 3, 4, j3 ∈ V N
0 , j4 ∈ VM−1

0 ,

k1 = j1, k2 = 4, k3 = j3, k4 = j4,
j1 = 0, j2 = 5, j3 ∈ V N

0 , j4 ∈ VM
0 ,

j4θ, k1 = j1, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 = 0, j2 = 0, j3 ∈ V N

0 , j4 ∈ VM
1 ,

k1 = j1, k2 = 4, k3 = j3, k4 = j4 − 1,
j1 = 0, j2 = 5, j3 ∈ V N

0 , j4 ∈ VM
1 ,

µ2, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 = 0, j2 = 3, j3 ∈ V N

0 , j4 = 0,

k1 = j1, k2 = 5, k3 = j3, k4 = j4,
j1 = 0, j2 = 4, j3 ∈ V N

0 , j4 ∈ VM
0 ,

rµ2, k1 = j1, k2 = j2, k3 = j3, k4 = j4 − 1,
j1 = 0, j2 = 3, j3 ∈ V N

0 , j4 ∈ VM
1 ,

(1− r)µ2, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 = 0, j2 = 3, j3 ∈ V N

0 , j4 ∈ VM
1 ,

M. Bhuvnashwari et al, Journal of Global Research in Mathematical Archives, 6(4), April, 2019, 01-11

© JGRMA 2019, All Rights Reserved                                                                                                                                                                                                                                                                                 5





η, k1 = j1, k2 = 4, k3 = j3, k4 = j4,
j1 = 0, j2 = 3, j3 ∈ V N

0 , j4 ∈ VM
0 ,

α, k1 = j1, k2 = 3, k3 = j3, k4 = j4,
j1 = 0, j2 = 4, j3 ∈ V N

0 , j4 ∈ VM
0 ,

k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 = 0, j2 = 5, j3 ∈ V N

0 , j4 = 0,

rα, k1 = j1, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 = 0, j2 = 5, j3 ∈ V N

0 , j4 ∈ VM
1 ,

(1− r)α, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 = 0, j2 = 5, j3 ∈ V N

0 , j4 ∈ VM
1 ,

−(δ̄j3Nλ1 + λ2 + β k1 = j1, k2 = j2, k3 = j3, k4 = j4,
+j4θ + αδj25), j1 = 0, j2 = 0, 5, j3 ∈ V N

0 , j4 ∈ VM
0 ,

−(δ̄j3Nλ1 + δ̄j3Mλ2 + β k1 = j1, k2 = j2, k3 = j3, k4 = j4,
+µ2 + ηδj23 + αδj24), j1 = 0, j2 = 3, 4, j3 ∈ V N

0 , j4 ∈ VM
0 ,

0, otherwise.

For k = 1, 2

Ωk =



λ1, k1 = j1, k2 = 1, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 0, j3 = 0, j4 ∈ VM
0 ,

k1 = j1, k2 = j2, k3 = j3 + 1, k4 = j4,

j1 ∈ V S
1 , j2 ∈ V 4

1 , j3 ∈ V N−1
0 , j4 ∈ VM

0 ,

k1 = j1, k2 = 2, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 5, j3 = 0, j4 ∈ VM
0 ,

λ2, k1 = j1, k2 = 3, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 0, j3 = 0, j4 ∈ VM
0 ,

k1 = j1, k2 = j2, k3 = j3, k4 = j4 + 1,

j1 ∈ V S
1 , j2 ∈ V 4

1 , j3 ∈ V N
0 , j4 ∈ VM−1

0 ,

k1 = j1, k2 = j2, k3 = j3, k4 = j4 + 1,

j1 ∈ V S
1 , j2 = 5, j3 = 0, j4 ∈ VM−1

0 ,
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j4θ, k1 = j1, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 ∈ V S

1 , j2 = 0, j3 = 0, j4 ∈ VM
0 ,

k1 = j1, k2 = 4, k3 = j3, k4 = j4 − 1,
j1 ∈ V S

1 , j2 = 5, j3 = 0, j4 ∈ VM
1 ,

η k1 = j1, k2 = 2, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 1, j3 ∈ V N
0 , j4 ∈ VM

0 ,

k1 = j1, k2 = 4, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 3, j3 ∈ V N
0 , j4 ∈ VM

0 ,

µ2, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 3, j3 = 0, j4 = 0,

k1 = j1, k2 = 1, k3 = j3 − 1, k4 = j4,
j1 ∈ V S

1 , j2 = 3, j3 ∈ V N
1 , j4 ∈ VM

0 ,

k1 = j1, k2 = 5, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 4, j3 = 0, j4 ∈ VM
0 ,

k1 = j1, k2 = 2, k3 = j3 − 1, k4 = j4,
j1 ∈ V S

1 , j2 = 4, j3 ∈ V N
1 , j4 ∈ VM

0 ,

(1− r)µ2, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 3, j3 = 0, j4 ∈ VM
1 ,

rµ2, k1 = j1, k2 = j2, k3 = j3, k4 = j4 − 1,
j1 ∈ V S

1 , j2 = 3, j3 = 0, j4 ∈ VM
1 ,

α, k1 = j1, k2 = 1, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 2, j3 ∈ V N
0 , j4 ∈ VM

0 ,

k1 = j1, k2 = 3, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 4, j3 ∈ V N
0 , j4 ∈ VM

0 ,

k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 5, j3 = 0, j4 = 0,

(1− r)α, k1 = j1, k2 = 0, k3 = j3, k4 = j4,
j1 ∈ V S

1 , j2 = 5, j3 = 0, j4 ∈ VM
1 ,

rα, k1 = j1, k2 = 3, k3 = j3, k4 = j4 − 1,
j1 ∈ V S

1 , j2 = 5, j3 = 0, j4 ∈ VM
1 ,
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−(λ1 + λ2 + δk1β k1 = j1, k2 = j2, k3 = j3, k4 = j4,
+j4θ + αδj25), j1 ∈ V S

1 , j2 = 0, 5, j3 = 0, j4 ∈ VM
0 ,

−(δ̄j3Nλ1 + δ̄j4Mλ2 + δk1β k1 = j1, k2 = j2, k3 = j3, k4 = j4,
+µ1 + αδj21 + ηδj22), j1 ∈ V S

1 , j2 = 1, 2, j3 ∈ V N
0 , j4 ∈ VM

0 ,

−(δ̄j3Nλ1 + δ̄j4Mλ2 + δk1β k1 = j1, k2 = j2, k3 = j3, k4 = j4,
+µ2 + αδj24 + ηδj23), j1 ∈ V S

1 , j2 = 3, 4, j3 ∈ V N
0 , j4 ∈ VM

0 ,

0, otherwise.

3.1 Steady-state Analysis

We can observed from the formation of Γ that the time homogeneous Markov process y(t) on the state
space A is irreducible, aperiodic and persistent non-null. Hence the limiting distribution

x(j1,j2,j3,j4) = lim
t→∞

Pr[y1(t) = j1, y2(t) = j2, y3(t) = j3, y4(t) = j4|y1(0), y2(0), y3(0), y4(0)]

exists and is independent of the initial state, that is,

x(j1,j2,j3) =


(x(j1,j2,j3,0) · · · , x(j1,j2,j3,M)), j1 = 0; j2 = 0, 3, 4, 5; j3 ∈ V N

0 ;

(x(j1,j2,j3,0) · · · , x(j1,j2,j3,M)), j1 ∈ V S
1 ; j2 = 0, 5; j3 = 0;

(x(j1,j2,j3,0) · · · , x(j1,j2,j3,M)), j1 ∈ V S
1 ; j2 ∈ V 4

1 ; j3 ∈ V N
0 ;

x(j1,j2) =


(x(j1,j2,0)), j1 ∈ V S

1 ; j2 = 0, 5;

(x(j1,j2,0) · · · , x(j1,j2,N)); j1 = 0; j2 = 0, 3, 4, 5;

(x(j1,j2,0) · · · , x(j1,j2,N)); j1 ∈ V S
1 ; j2 ∈ V 4

1 ;

x(j1) =

{
(x(j1,0), x(j1,3), x(j1,4), x(j1,5)), j1 = 0;

(x(j1,0) · · · , x(j1,5)); j1 ∈ V S
1 ;

X = (x(0),x(1), . . . ,x(S))

satisfies

XΓ = 0 and (1)∑∑∑∑
(j1,j2,j3,j4)

φ(j1,j2,j3,j4) = 1 (2)

From (1), we can get the following set of equations:

x(j1)Ω0 + x(j1+1)∆1 = 0, j1 = 0,

x(j1)Ω1 + x(j1+1)∆2 = 0, j1 = 1, 2, . . . , s,

x(j1)Ω2 + x(j1+1)∆2 = 0, j1 = s+ 1, .., Q− 1,

x(0)Ψ1 + x(j1)Ω2 + x(j1+1)∆2 = 0, j1 = Q, (∗)
x(j1−Q)Ψ + x(j1)Ω2 + x(j1+1)∆2 = 0, j1 = Q+ 1, .., S − 1,

x(j1−Q)Ψ + x(j1)Ω2 = 0, j1 = S,
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After extensive computational work, the above equations, (except (∗)), yield

x(j1) = x(Q)Φj1 , j1 = 0, 1, . . . , S.

where

Φj1 =



(−1)Q−j1(∆2Ω
−1
2 )

(Q−(s+1))
(∆2Ω

−1
1 )

s
(∆1Ω

−1
0 ), j1 = 0,

(−1)Q−j1(∆2Ω
−1
2 )

(Q−(s+1))
(∆2Ω

−1
1 )

((s+1)−j1)
, j1 = 1, 2, . . . , s,

(−1)Q−j1(∆2Ω
−1
2 )

(Q−j1)
, j1 = s+ 1, s+ 2, . . . , Q− 1,

I, j1 = Q,
S−j1∑
i=0

(−1)(2Q+1−j1)(∆2Ω
−1
2 )(S+s−(j1+i+1))(∆2Ω

−1
1 )(j+1)(ΨΩ−12 ),

j1 = Q+ 1, Q+ 2, . . . , S,

x(Q) can be obtained by solving equation (∗) and Xe = 1.

That is,

x(Q)
(

(−1)Q(∆2Ω
−1
2 )

(Q−(s+1))
(∆2Ω

−1
1 )

s
(∆1Ω

−1
0 )Ψ1 + Ω2+

s−1∑
j=0

(−1)Q(∆2Ω
−1
2 )(2(s−1)−j)(∆2Ω

−1
1 )(j+1)(ΨΩ−12 )∆2

 = 0,

and

x(Q)
[
(−1)Q(∆2Ω

−1
2 )

(Q−(s+1))
(∆2Ω

−1
1 )

s
(∆1Ω

−1
0 )+

s∑
i=1

(−1)Q−i(∆2Ω
−1
2 )

(Q−(s+1))
(∆2Ω

−1
1 )

((s+1)−i)

+

Q−1∑
i=s+1

(−1)Q−i(∆2Ω
−1
2 )

(Q−i)
+ I+

S∑
i=Q+1

S−i∑
j=0

(−1)(2Q+1−i)(∆2Ω
−1
2 )(S+s−(i+j+1))(∆2Ω

−1
1 )(j+1)(ΨΩ−12 )

 e = 1.

4 System performance measures

The following system performance measures are derived to find the values of expected total cost.

4.1 Mean Inventory Level (MI)

MI =

S∑
j1=1

M∑
j4=0

j1

[
x(j1,0,0,j4) + x(j1,5,0,j4)

]
+

S∑
j1=1

4∑
j2=1

N∑
j3=0

M∑
j4=0

j1x
(j1,j2,j3,j4)

4.2 Mean Reorder Rate (MR)

MR =
2∑

j2=1

N∑
j3=0

M∑
j4=0

µ1x
(s+1,j2,j3,j4)
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4.3 Mean Number of HPC in the Queue (MHP )

MHP =

5∑
j2=3

N∑
j3=1

M∑
j4=0

j3

[
x(0,0,j3,j4) + x(j1,j2,j3,j4)

]
+

S∑
j1=1

4∑
j2=1

N∑
j3=1

M∑
j4=0

j3x
(j1,j2,j3,j4)

4.4 Mean Number of LPC in the Orbit (MLPO)

MLPO =
5∑

j2=3

N∑
j3=0

M∑
j4=1

j4

[
x(0,0,j3,j4) + x(j1,j2,j3,j4)

]
+

S∑
j1=1

4∑
j2=1

N∑
j3=0

M∑
j4=1

j4x
(j1,j2,j3,j4)

+

S∑
j1=1

M∑
j4=1

j4

[
x(j1,0,0,j4) + x(j1,5,0,j4)

]

4.5 Mean Interruption Rate (MIR)

MIR =
N∑

j3=0

M∑
j4=0

ηx(0,3,j3,j4) +
S∑

j1=1

N∑
j3=0

M∑
j4=0

η
[
x(j1,1,j3,j4) + x(j1,3,j3,j4)

]

4.6 Mean Repair Rate (MRR)

MRR =
5∑

j2=4

N∑
j3=0

M∑
j4=0

αx(0,j2,j3,j4) +

S∑
j1=1

M∑
j4=0

αx(j1,5,0,j4) +

S∑
j1=1

N∑
j3=0

M∑
j4=0

α
[
x(j1,2,j3,j4) + x(j1,4,j3,j4)

]

4.7 Mean Number of HPC lost (MHPL)

MHPL =

5∑
j2=3

M∑
j4=0

λ1

[
x(0,0,N,j4) + x(0,j2,N,j4)

]
+

S∑
j1=1

4∑
j2=1

M∑
j4=0

λ1x
(j1,j2,N,j4)

4.8 Mean Number of LPC lost (MLPC)

MLPC =
4∑

j2=3

N∑
j3=0

λ2x
(0,j2,j3,M) +

S∑
j1=1

4∑
j2=1

N∑
j3=0

λ2x
(j1,j2,j3,M)

4.9 Expected total cost

Here different costs are defined as

ch = The inventory carrying cost per unit item per unit time.
cs = Setup cost per order.
ci = Interruption rate per unit per unit time.
cr = Repair rate per unit per unit time.
cwh = Waiting time cost of a HP customer per unit per unit time.
cwl = Waiting time cost of a LP customer per unit per unit time.
clh = Cost due to loss of HP customers per unit per unit time.
cll = Cost due to loss of LP customers per unit per unit time.

We introduce a cost function, defined as the expected total cost (TC) of the system, is given by

TC(S, s,N,M) = chηI + csηR + cpηP + cs1E[W ] + cs2E[F ] + cl1ηL1 + cl2ηL2. (3)
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