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Abstract: Let Gbe a connected simple graph. A convex dominating set S of Gis a convex secure dominating set, if for each
element u € V(G)\S thereexists an element v € Ssuch thatuv € E(G) and (S\{v}) U {u}is adominating set. The convex
secure domination number of G, denoted byy,(G), is the minimum cardinality of a convex secure dominating set of G. A convex
secure dominating set of cardinalityy.,(G) will be calleda y.-set. In this paper, we investigate the concept and give some
important results on convex secure dominating sets in the join and Cartesian product of two graphs.
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1 INTRODUCTION

Let Gbe a simple connected graph. A subset S of a vertex set VV (G) is a dominating set of G if for every vertex v € V (G)\S, there
exists a vertexx € S such thatxv is an edge of G. The domination numbery (G) of Gis the smallest cardinality of a dominating
setS of G. Dominating sets have several applications in a variety of fields, including communication and electrical networks,
protection and location strategies, data structures and others. For more background on dominating sets, the reader may refer to [3,
18]. Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [21]. A graph G is connected if there
is at least one path that connects every two vertices x,y € V (G), otherwise, G is disconnected. For any two vertices w and v in a
connected graph, the distanced; (u, v) between u and vis the length ofa shortest path inG. Au-v path of length d;(u,v) is also
referred to as u-v geodesic. The closed interval I;[u, v] consist of all those vertices lying on au-v geodesic inG. For a subset Sof
vertices ofG, the union of all setsl; [u, v]foru, v € S is denoted byl;[S]. Hencex € I;[S] if and only ifx lies on some u-v geodesic,
whereu, v € S. A setS is convex if I;[S] = S. Certainly, ifG is connected graph, thenV (G) is convex. Convexity in graphs was
studiedin [12, 14, 22]. Some variants of convex domination in graphs are found in[1, 6, 8, 20].

A complete graph of order n, denoted byk,,, is the graph in which everypair of its distinct vertices are joined by an edge. A
nonempty subsetSof V' (G)is a clique in Gif the graph (S)induced by S is complete. A nonempty subset S of a vertex set V (G) is a
clique dominating set of GifSis a dominating setand S is a clique inG. Clique domination in a graph is found in the paper ofDaniel
and Canoy [23]. Some variant of clique domination in graphs is foundin [19].

A dominating set S which is also convex is called a convex dominating set ofG. The convex domination number y,,,(G) ofG is
the smallest cardinality of a convex dominating set ofG. A convex dominating set of cardinalityy,.,,(G) is called ay,,,-
set ofG. Convex domination in graphs has been studied in [16,22]. A dominating set S inG is called a secure dominating set inG if
for every u € V (G) \ S, there existsv € S\ N;(u) such that (S\ {v}) U {u}is a dominating set. The minimum cardinality of
secure dominating set is called the secure domination number of G and is denoted by y,(G). A secure dominating set of cardinality
¥s(G) is called s-set of G. The concept of secure dominationin graphs was studied and introduced by E.J. Cockayne et.al [4, 5, 2].
Recently,Enriquez and Canoy, introduced a new domination parameter, the concept of secure convex domination in graphs [7].
Some variants of secure domination in graphs are found in [9, 10, 11, 17].

Motivated by the definition of convex domination and secure domination in graphs, we define a new domination in a graph. A
convex dominating setS ofGis a convex secure dominating set, if for each element u in V (G)\Sthere exists an elementv in S such
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thatuv € E(G) and(S\{v}) U {u}is a dominating set. The convex secure domination number ofG, denoted byy..(G), is the
minimum cardinality of a convex secure dominating set ofG. A convex secure dominating set of cardinalityy,.,(G) will be called
ay.s-set.For general concepts we refer the reader to [13].

2 RESULTS

Remark 2.1 A convex secure dominating set of a graph Gis a convex dominating set and secure dominating set of G.

Let Gbe a nontrivial connected graph. Since V(G) is both convex andsecure dominating set, it follows that V (G) is a convex
secure dominating set.

From the definition of convex secure dominating set, the following result is immediate.

Remark 2.2 Let Gbe a nontrivial connected graph. Then

1)y (G) < ¥5(G) < y.(G); and
(i) 1 <y,(6) < n.

It is worth mentioning that the upper bound in Remark 2.2(ii) is sharp.For example, y.(C,) = n for all n = 6. The lower bound
is also attainable asthe following result shows.

Theorem 2.3 Given positive integersk andnsuch thatl < k < n,there exists a connected nontrivial graphG with|V (G)| =
nandy.(G) = k.

Proof:Consider the following cases:

Casel. Suppose k = 1.

Let G = K,.Then, clearly, |V (G)| = nandy.(G) = 1.
Case2. Suppose 2 < k < n.

Let H = K, (r = 2) andK,, = [a;,dy,...,0,] (m> 1).Letn = r + mandk = m + 1.Consider the graph G obtained
from H by adding the edgesva,, va,, ..., va,,_,, va,,(see Figure 1).

H G

Figure 1: A graph G with v..(G) = &
Subcasel. Suppose that k = 2.
Letm = 1.ThenthesetS = {v,a,}isay-set ofG. Thus,|V (G)| =r + 1 = nandy(G) = 2.
Subcase2. Suppose that 3 <k <n — 1.

Letm = 2. Then the setS
particular, ifm = 2, thenk

{v,a,,a,,...,a,}is ay,-set of G. Thus,|V (G)] = r + m = nandy,(G) = m + 1 = k.In
3.Further,ifr = 2thenk =m+1=m+2—-1=m+r —-1=n— 1.

Subcase3. Suppose k = n.
LetG = C,foralln = 6.Then|V (G)| = nandy(G) = n.
This proves the assertion. m

Corollary 2.4The difference y.,(G) — y(G) can be made arbitrarily large.
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Proof: Let n be a positive integer. By Theorem 2.3, there exists a connected graph G such that y.,(G) =n+1 andy(G) =
1. Thus, y.(G) — y(G) = n, showing thaty.;(G) — y(G) can be made arbitrarily large. m

We need the following theorems for our next results.
Theorem 2.5 [2]Let G be a graph of order n > 1. Theny,(G) = 1 ifand only if G = K,.

Theorem 2.6[9] Let G be a connected graph of ordern > 3. Then y.(G) = 2 if and only if G is non-complete and there exists
distinct and adjacent vertices x and y that dominate G and satisfy one of the following conditions:

ON\N =N\ {x} =V(G) \ {x, ¥}
(iD)(N(x) \ N[y]) and (N (y)\N[x]) are complete and for eachu € N(x) N N(y) either ((N(x) \ N[y]) u {u}) or
((N)\ N[x]) U {u})is complete.
@WON@) \ {y} = V(@ \ {x,y}, N(x) \ N[y] # @ and ( N(x) \ N[y]) is complete.

Remark 2.7Every clique dominating set is a convex dominating set.

The converse of Remark 2.7 need not be true. For example the minimum convex dominating set of P,for all n > 5 where
V(B) = {x1,%2,..., Xn_1, %} 1SS = {x3,x3,...,x,_1}. But S is not a clique dominating set of B,for alln > 5.

The following results are the characterizations of dominating sets with convex secure domination numbers of one and two.
Theorem 2.8Let G be a graph of order n > 1. Theny,,(G) = 1 if and only if G is a complete graph.

Proof: Suppose that y.,(G) = 1. Let S = {v} be ay,s-set in G. Then by Remark 2.1 S is a secure dominating set of G. Hence, G
is a complete graph by Theorem 2.5.

For the converse, suppose that G is a complete graph. Theny,(G) = 1 by Theorem 2.5. LetS = {x} be a minimum secure
dominating set of G. Since S is convex set, it follows that S is a convex secure dominating set of G. Thus, y.s(G) = 1. =

Theorem 2.9Let G be a connected graph of ordern > 3. Theny.(G) = 2 if and only if G is non-complete and there exists
distinct and adjacent vertices x and y that dominate G and satisfy one of the following conditions:

(ON\{y} =NO)\ {x} =V(6) \ {x,5}.

(i) (N(x) \ N[y])and { N(¥) \ N[x]) are complete and for eachu € N(x) N N(y) either ((N(x) \ N[y]) U {u})or
((N(y) \ N[x]) U {u}) is complete.

EON@)\{y} = V(G \ (x,y}, N(x) \ N[y] # @ and ( N(x) \ N[y]) is complete.

Proof:Suppose thaty.(G) = 2. Then G in non-complete by Theorem 2.8. LetS = {x,y}be a minimum convex secure
dominating set of G. Then x and y are distinct and adjacent vertices that dominate G. This implies that y € N(x) and x € N(y).
Sincen = 3,N(x) \ {¥} # @ andN(y) \ {x} # @. Consider the following cases:

Casel. Suppose that x dominate G and y dominate G.

Let z € N(x) \ {v}. Since y dominate G, z € N(y) and hence z € N(y) \ {x}. Thus, N(x) \ {y} € N(y) \ {x}. Letw € N(y) \
{x}. Similarly, since x dominate G,N(y) \ {x} € N(x) \ {y}. This implies that N(x) \ {y} = N(y) \ {x}. Further, ifz €
N(x) \ {y}, then z € V(G) and z & {x,y}implies thatz € V(G) \ {x,y}, that is, N(x) \ {y} € V(G) \ {x,y}. Now, letu €
V(G) \ {x,y}. Since x dominate G,u € N(x) and henceu € N(x) \ {y}. Thus, V(G) \ {x,y} € N(x) \ {y}, that is, N(x) \
{y} =V(G) \ {x,y}. Therefore, N(x) \ {y} = N(y) \ {x} = V(G) \ {x,y}. This proves statement (i).

Case2. Suppose that x dominate G and y does not dominate G.

Since x dominate G,N(x) \ {y} = V(G) \ {x,y} by proof in Casel. Sincen > 3,N(x) \ N[y] # @. Suppose that there exists
u,v € N(x) \ N[y] such that uv € E(G). ThenS,, = (S \ {x}) U {u} = {y,u}. Since yv,uv & E(G), it follows that S,is not a
dominating set of G contrary to our assumption that Sis a secure dominating set of G. Therefore ( N(x) \ N[y]) must be a
complete sub-graph.This proves statement (iii).

Case3. Suppose that neither x nor y dominate G.

By following similar arguments in Case2, { N(x)\N[y]) and { N(y) \ N[x]) are complete graphs. Suppose that N(x) n N(y) #

@. Letu € N(x) N N(y).Suppose there exists z € N(x)\N[y] such thatzu ¢ E(G).ThenS, = (S\ {y}) U {u} = {x,u}.
Since Sis a secure dominating set,S, is a dominating set of G. This implies that for eachv € N(y) \ {x},uv € E(G).
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Since (N(y) \ N[x]) is complete, it follows that ((N(y)\N[x]) U {u})is complete. Similarly, if there exists z € N(y) \ N[x]
such that zu & E(G), then ( (N(x) \ N[y]) U {u}) must be complete. This proves statement (ii).

For the converse, suppose that statement (i) or (ii) or (iii) is satisfied. Then by Theorem 2.5, y.(G) = 2. LetS = {x, y} be the
minimum clique secure dominating set of G. Since every clique dominating set is a convex dominating set by Remark 2.7, it
follows that S is a convex secure dominating set of G. Thus y.(G) < 2. Since G is non-complete, y..(G) = 2by Theorem 2.6.
Thereforey ,(G) =2. m

The join of two graphs G and His the graph G + Hwith vertex-set V(G + H) = V(G) U V(H) and edge-set
E(G+H)=EG)U E(H)U {uv:u € V(G),v € V(H)}.

We need the following result for the characterization of the convex secure dominating sets in the join of two graphs.

Theorem 2.10 [9] Let G and H be connected non-complete graphs. Then a proper subset S of V(G + H) is a clique secure
dominating set in G + H if and only if one of the following statements holds:

(i) Sisaclique secure dominating set of G and |S| = 2.

(i0) S is a clique secure dominating set of H and|S| > 2.

(iii) S = S; U Sy whereS; = {v} ¢ V(G) andS, = {w} c V(H) and

(a) S;is a dominating set of G andSyis a dominating set of H; or

(b)S; is dominating set of G and(V(H) \ Sy) \ Ny(Sy) isaclique in H; or

(c)Sy is dominating set of H and (V(G) \ S;) \ Ng(Sg) isaclique in G; or

(YW (G)\ Sg) \ N;(Sg) isaclique in G and(V(H) \ Sy)\Ny(Sy) isaclique in H.

(iv) S = S; U Sywhere S; isaclique in G (|S;| = 2) andSy = {w} < V(H) and (V(G) \ S;) \ N;(S;) is aclique in G.
(v) S =S, USywhere S; = {v} c V(G)and Sy isacliquein H (|Sy| = 2) and(V(H)\Sy) \ Ny (Sy) isaclique in H.
(vi)S = S; U Sy whereSgis aclique in G (|Sg| = 2) andSyis a clique in H (|Sy| = 2).

The next result is the characterization of a convex secure dominating set in the join of two graphs.

Theorem 2.11Let G and H be connected non-complete graphs. Then a proper subset S of V(G + H) is a convex secure
dominating setin G + H if and only if S is a clique secure dominating setin G + H.

Proof: Suppose that a proper subset S of V(G + H) is a convex secure dominating set in G + H. Consider the following cases:
Casel. Suppose that SN V(H) =@orSn V(G) = 9.

If SNV(H)=0@the S < V(G). This implies that S is a convex secure dominating set of G. Now suppose that |S| = 1, say S =
{a}. Since S is a convex secure dominating set of G + H, {z} is a dominating set of G + H (and hence in H) for every z €
V (H). This implies that H is a complete graph, contrary to our assumption. Thus, |S| = 2. In view of Theorem 2.10(i), S is a
clique secure dominating set in G + H. Similarly, if Sn V(G) = @, thenSis a clique secure dominating set inG + H by
Theorem 2.10(ii).

Case2. Suppose that S; =S N V(G) # @and Sy =S N V(H) # @. Then S = S; U Sy. Consider the following subcases.

Subcasel. Suppose that S; = {v} c V(G) and Sy = {w} c V(H). IfS;is a dominating set of G andSyis a dominating set of H,
then S is a clique secure dominating set in G + H by Theorem 2.10(iiia). Suppose that S is a dominating set of G and Sjis not a
dominating set of H. Let x € (V(H) \ Sy) \ Ny(Sy). Since S is a convex secure dominating set of G + H, {w, x} is a dominating
set in G + H (and hence in H). Sincewx & E(H), xy € E(H) for everyy & Ny(w). This implies that y € (V(H) \ Sy) \
Ny (Sy). Since x was arbitrarily chosen, it follows that the subgraph ((V(H) \ Sg) \ Ny(Sg))induced by(V(H) \ Sy) \
Ny (Sy) is complete. Hence,(V(H) \ Sy) \ Ny (Sy) is a clique in H. This shows that S is a clique secure dominating set in G +
H by Theorem 2.10(iiib). Similarly, ifSy is dominating set of H and S; is not a dominating set of G, then (V(G) \ S;) \
N (Sg) is a clique in G. This shows that S is a clique secure dominating set in G + H by Theorem 2.10(iiic). IfS;is not a
dominating set of G and Syis not a dominating set of H, then by following similar arguments in (iiib) and (iiic), S is a clique
secure dominating set in G + H by Theorem 2.10(iiid).

Subcase2. Suppose that S;is a clique in G (|S;| = 2) andS, = {w} c V(H).If S; is a dominating set of G, then S is a clique
secure dominating set in G + H by Theorem 2.10(i). Suppose that S; is not a dominating set of G. Let x € (V(G) \ Sg) \
N¢(S¢). Since S is a convex secure dominating set of G + H, S, = (S \ {w}) U {x}is a dominating set of G + H (and hence
of G). Since vx & E(G) for every v € S;, xy € E(G) for every y & N;(S;) (otherwise, S, is not dominating set of G + H. This
implies thaty € (V(G) \ S¢) \ N;(S;). Since x was arbitrarily chosen, it follows that the subgraph ((V(G)\ S;) \
N (Sg)) induced by (V(G) \ S;) \ Ng(Sg) is complete. Hence (V(G) \ S;) \ N;(S;) is a clique in G. This implies that Sis a
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clique secure dominating set in G + H by Theorem 2.1(iv).Similarly, if S; = {v} c V(G) and Sy € V(H) (|Sy| = 2),then S
is a clique secure dominating set in G + H by Theorem (v).

Subcase3. Suppose that S; is a clique in G and Syis a clique in H. Let|S;| = 2. IfS; is a dominating set of G, then S is a clique
secure dominating set in G + H by Theorem 2.10(i). Suppose thatS;is not a dominating set of G. If (V(G) \ S;) \ Ng(Sg)isa
clique in G, then S is a clique secure dominating set in G + H by Theorem 2.10(iv). Suppose that (V(G) \ S;) \ N;(S;) isnota
clique inG. If |S_H| =1, say Sy = {w}, then there exists x € (V(G) \ S;) \ N¢(S;) such thatS, = (S \ {w}) U {x} is not a
dominating set of G(and hence of G + H). This contradict to our assumption that S is a convex secure dominating set of G + H.
Thus, |Sy| = 2. Similarly, if |Sy| = 2 and (V(H) \ Sy) \ Ny(Sy) is not a clique in H, then |S;| = 2. Thus, Sis a clique
secure dominating set in G + H by Theorem 2.10(vi).

For the converse, suppose S is a clique secure dominating set in G + H. Then S is a clique dominating set and a secure
dominating set in G + H. Since every clique dominating set is a convex dominating set by Remark 2.7, it follows that S is a
convex dominating set and secure dominating set of G. Accordingly, S is a convex secure dominating set of a graph G + H by
Remark 2.7. m

The following result is an immediate consequence of Theorem 2.11.

Corollary 2.12Let G and H be connected non-complete graphs.

2 if )/cl(G) =2o0r ycl(H) =2,
Yes(G+H){3 if S;and V(G)\Ng;(S;) are cliques in G or Sy and V(H)\Ny(Sy) are cliques in H,
4 if S¢ is clique in G and Sy is clique in H,

where (|S;| = 2) and (|Sy| = 2).

Remark 2.13A clique secure dominating set S of a graph G is a clique and a secure dominating set of G.
Remark 2.14 Every secure clique dominating set of a graph G is a clique secure dominating set of G.

The converse of Remark 2.14 is not true. Consider the graph in Figure 2. .

T3

T4

Figure 2: A graph G with v.(G) = 2

The set S = {x;, x,} is a clique secure dominating set but not a secure clique dominating set of a graph G. In fact G has no secure
clique dominating set.

The Cartesian product of two graphs G and H is the graph G -1 H with vertex-set V(G [0 H) = V(G) x V(H) and edge-
set E(G [1 H) satisfying the following conditions: (x,a)(y,b) € E(G [:1 H) if and only if either xy € E(G)anda=b orx =y
and ab € E(H).

We need the following results for the characterization of convex secure dominating sets in the Cartesian product of two graphs.

Theorem 2.15 [15] Let G and H be connected graphs. A subset C of V(G [-] H) is a convex dominating set in G\[-] H if and
onlyifC =C; x C, and

()€, is a convex dominating set in G andC, = V(H), or
(i) C, is a convex dominating set in H andC; = V (G).

Corollary 2.16 [15] Let G and H be connected graphs of orders m and n respectively. Then y.,,(G [ H) = min{m -
yeon(H),n-ycon(G)}.

The next result is the characterization of convex secure dominating sets in the Cartesian product of two graphs.
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Theorem 2.17Let G and H be noncomplete connected graphs. A nonempty subset C = U,cs({x} X T,)is a convex secure
dominating set in G -] H if and only if one of the following statement is satisfied.

(i) S is a convex secure dominating set in G and T,, = V(H) for each x € S.
(ii) S = V(G) andT, is a convex secure dominating set of H for each x € S.

Proof: Suppose that a nonempty subset € = U,cs({x} X T,) is a convex secure dominating set in G [] H. Then C is a convex
dominating set in G [-] H by Remark 2.1. This implies that statement Theorem 2.15(i) or Theorem 2.15(ii) holds. Suppose that
Theorem 2.15(i) holds. Let S is a convex dominating set of G and T, = V(H) for each x € S. Suppose that S is not a secure
dominating set in G. Then, either S or (S'\ {v}) U {v} is not a dominating set in G. If S is not a dominating set in G, then there
existsu € V(G) \ Ssuchthatuv ¢ E(G) forall v € S. Leta € V(H). Then

(w,a) e V(G H)\ Cand (v,a) € C. Since uv ¢ E(G) for all v € S, it follows that (v, a)(v,a) € E(G 1 H) for all (v,a) €
C. Hence, C is not a dominating set in G [] H contrary to our assumption. If S, = (S\ {v}) U {u} is not a dominating set in G,
then there exists u’ € V(G) \ S, such that u'v' ¢ E(G) for allv' € S,,. Let C' = S, x V(H) and leta’ € V(H). Then (u’,a’) €
V(G H)\C and (v',a") € C'. Since u'v' ¢ E(G) for all v' € S,,, it follows that (u',a")(v',a") € E(G 1 H) for all(v',a’) €
C'. This implies that C' is not a dominating set in G [:] H and hence C is not a secure dominating set in G [] H contrary to our
assumption that C is a convex secure dominating set in G ] H. Thus, S must be a secure dominating set in G. This proves
statement (i). Similarly, if Theorem 2.15(ii) holds, then statement (ii) holds.

For the converse, suppose that statement (i) or (ii) holds. First, suppose that statement (i) holds. Then S is a convex dominating
setin G and T, = V(H) for each x € S. Thus, C is a convex dominating set in G [-1 H by Theorem 2.15. Since S is a secure
dominating set in G, for every u € V(G) \ S, there exists v € S such that uv € E(G) and S, = (S \ {v}) U {u} is a dominating
set in G. This implies that for every u' € V(G) \ S, there exists v’ € S,such thatu'v' € E(G). LetC' =S, X V(H) and let
a € V(H). Then for every (u',a’) € V(G [1H)\ C' there exists (v',a’) € C' such that(u’,a’)(v',a’) € E(G [[1 H). This
implies that €' is a dominating set. Accordingly, C is convex secure dominating set in G [] H. Similarly, if statement (ii) holds,
then C is convex secure dominatingsetinG -1 H.m

The following is a quick consequence of Theorem 2.17.
Corollary 18Let G and H be non-complete connected graphs. Theny,.s(G [ H]) = {{V(G)|yes(H), ves (G) |V (H) |3
3.CONCLUSION

An convex secure dominating set is a new variant of domination in graphs. Hence, this paper is a contribution to the
development of domination theory in general. Since this is new, further investigations on binary operations and bounds of this
parameter must be done to come up with substantial results. Thus, we initiate the study of the join and Cartesian product of two
graphs of the convex secure dominating sets. Its corresponding convex secure domination number was also studied. From the
results, we showed that the convex secure domination number of the join of two connected non-complete graphs is 2 if y;(G) =
20ry,(H) = 2; 3 Sgand V(G)\Ng; (Sg)are cliques in G orSyand V(H)\Ng(Sy)are cliques in H; and 4 if S; is clique in G and
Syis clique in H, where(|S;| = 2)and (|Sg| = 2). Moreover, the convex secure domination number of the Cartesian product of
two connected non-complete graphsy.s(G [ H]), is {|V(G)|y.s(H), ves (G)|V (H)|}.
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