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Abstract: As is known, the Riemann-Liouville fractional integration operator establishes an isomorphism between Hélder spaces for functions
one variables. We study mixed Riemann-Liouville fractional integration operats and mixed fractional derivative in Marchaud form of function of
two variables in Holder spaces of different orders in each variables. The obtained results extend the well known theorem of Hardy-Littlewood
for one-dimensuianl fractional integrals to the case of mixed Hélderness.
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INTRODUCTION
The classical result of G.Hardi and D.Littlewood (1928, see [1, 83]) is known that the fractional integral

(I o f XX) = F_l(a)(t“‘l * f XX), 0 < o <Lmaps isomorphically the space H¢ ([0, 1) of Holder order A & (0, 1) functions

+

with a condition f(O):Oon a similar space of a higher order A+« provided that A+a <1. Further, this result was

generalized in various directions: a space with a power weight, generalized Holder spaces, spaces of the Nikolsky type, etc. A
detailed review of these and some other similar results can be found in [1].
In the multidimensional case, the statement about the properties of a map in Hdélder spaces for a mixed fractional
Riemann — Liouville integral was studied in [2] - [6]
o(t, t)dtdc

+ +(p y) - —o B!
15:5.0) I'(a )F(B)”(X—t)l (y-o"
Mixed fractional derivatives form Marchaud ([7]—[9])

o, y)x "y I j oY) —ot D) 40
l+a 1+8
rl-o)rd-p) Id- a)F(l B) oo (Xx—=1)"*(y—1)
where X >0, y >0, were not studied either in the usual Holder space, or in the Hélder spaces defined by mixed differences.

Meanwhile, there arise “points of interest” related to the investigation of the above mixed differences of fractional derivatives
form Marchaud. For operators (1) in Holder spaces of mixed order there arise some questions to be answered in relation to the
usage of these or those differences in the definition of Hoélder spaces. Such mapping properties in Holder spaces of mixed order
were not studied. This paper is aimed to fill in this gap. We deal with non-weighted spaces.

Consider the operator (1) in a rectangle Q = {(X, y): O<x<b,0<y<d }

X>a,y>c, (1)

(D28, okx, y) = @)

For a continuous function @(X, ) on R? we introduce the notation

(Zoh @j(x,y) = p(x+h,y) — p(x, y), [A cp](x, ¥) = (kY + 1)~ o(X,¥),

(A mj(x, V) = 0(x-+h, Y+ 1) = 90X+ N, Y) = 9K,y + 1)+ 9(X,Y),
so that

o(x+h,y+m) = (A cpj(x, y)+(1A°h (p](x, y)+[°A’1n cpj(x, y) +o(x.y). @

Everywhere in the sequel by C,C,,C, etc we denote positive constants which may different values in different
occurences and even in the same line.

Definition 1. Let A,y € (0,1]. We say that ¢ € H M(Q), if
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|(P(X1'yl)_(P(leyzlSCJXl_xzr +Cz|y1_ y2|y 4)
for all (Xl, yl), (Xz, y2) € Q. Condition (4) is equivalent to the couple of the separate conditions

1,0 2 0,1 v
(Ah cpj(x, y)<CJhf", (An (pj(x, y)<C,n|
uniform with respect to another variable.
By HOM(Q) we define a subspace of functions f € Hé"y(Q), vanishing at the boundaries X =0 and y = 0 of Q.

Let A =0 and for y=0.We put H*°(Q)=L"(Q) and

H A,O(Q) = {(p c LOO(Q)Z ‘(LAOh (pj(X, y% < Cl|h|7”} A e (0,1],
(OAJn (pj(x, y% < C2|Tl|y}, v (0,1].

Definition 2. We say that ¢(x, y)e H™"(Q), where A,y € (0,1], if
o(x,y)e H"(Q) and (Ah : cp)(x y)( < Cyfnl'n[" ©)

We say that @(X, y) e ﬁgV(Q) it o(x,y)e I-NIM(Q) and @(X, Y)‘x=o, y=0=0.
These spaces become Banach spaces under the standard definition of the
0,1
(An (PJ(X1 Y*
”(P”Hx,y = ”(P”c(Q) + nyfhugoyb] yigpd] |h| + x?st'(l)Pb] y,yil;lgo,d]. |T]|v '

e
(Zlh-n (p)(x, y)

H*(Q)= {(p e L”(Q):

||(P|||:|'k,7 = ”(P”Hx,y + sup sup

X, x+he[0,b] y, y+nel0,d] |h|k|n|y
Note that
11 B
(p(X, y) eH"'= ‘(Ah,n (pj(x, y% < Ce|h|m|n|(l o , forany 6 €[0,1], (6)
where C, = 2C,C5™°, so that
ﬂ H’ex,(lfe)y(Q)J H}L'Y(Q)J l:ik,y(Q) (7)
0<0<1
where . stands for the continuous embedding, and the norm for ﬂ H eX’(H))V(Q) is introduced as the maximum in @ of
0<0<1
norms for H % -0F (Q) Since 0 €[0,1] is arbitarary, it is not hard to see that the inequality in (6) is equivalent to
11
(Ah,n (p}(x, y)( <Cmin 0", /' @

MAPPING PROPERTIES OF THE MIXED FRACTIONAL INTEGRATION OPERATOR IN HOLDER SPACES

Theorem 1. Let (D(X, y) eH l‘y(Q), 0< 4, y < 1. 0<a, IB < 1. Then for the mixed fractional integral operator (1)
the representation

x“yP + Xt
1+0c) (1+[3)

r(1+a)

( lo: 0+(PXX y Wz(y)"'\lf(X: Y) )

holds, where

1 Itp(t,)—cp(olo)dt, v (y)= L f@(O'S)—@(O,OC)dS]

) (y-s)f?
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11
X Yy ( ts(P (O O)
dtds,
FB)! I -t (y—sf
and
Wi <Cx™ [wy(y) <Gy (10)
lw(x, y) < Cmin x*+yP 01 = Cx*yP min {x y’ } (11)

0<6<1
Proof. Representation (9) itself is easily obtained by means of (3). Since p € H M(Q), inequalities (10) are obvious.
Estimate (11) is obtained by means of (6) and (8).

Theorem 2. Let 0<A, y<1. Then the mixed fractional integral operator |0+ 0. is bounded from HOM(Q) into
Hy " (Q),if A +o<land y+B<1.
Proof. Since @(X,y)e H{7(Q), then by (9) we have

(12, 0)x y)=w(xy).
We denote

g(x,y)= (Xx, y cpj(0,0) (12)

for brevity. Note that
11
(3..10]00)=0(x)

for p € HOM , but we prefer to keep the notetion for ( (X, y) via the mixed difference as in (12). By (6) we have

g(x, y) <Xy <min eyt (13)
For h>0; X, Xx+heQ, =[0,b], we consider the difference
t,
Wlxshy)- iy (j ety S
Xy
gxtys x+h - X gxys

H Tacis dtdsJ a+1 B)! ds +

L1 H g(x-ty-s)-gxy=s) . .

(o)), 3 (t+h)y™s?

h
1t gx=ty=s)-g(xy=S)[ vt o
t+h) " —t*"dtds=A, + A, +A,.
+F(cx)F(B)J;}[ P [( +h) ]d STATA A (1)
Since VO €[0,1], we make use of (13) with © =1 and obtain

A < C|(x+h) = x| <Che ™,

For A, inview of (6), we have

11
lg(x-t,y—s)-g(x,y-s)= ‘(AL ys (p](x,o% <cf, (15)

and then A, <Ch™**.
For A, by (15) and (6) we obtain

A, <Cltt = (t+h) tt —(t+h)*dt < oo.
0

dt <Coh***, C,=|t"
0

Gathering the estimates A;,A,, A, we obtain
lp(x+h,y)—w(x y|<Ch*.

Rearranging symmetrically representation (14), we can similarly obtain that
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w(xy+n)-wlx y)<Cn™.
Which proves the theorem.

Theorem 3. The mixed fractional integral operator IC‘,"J}0+ is bounded from the sapce I—~|0“(Q), 0 <A, y<1 into the
space I:|0“°"Y+B(Q), if \+a<land y+pB<1.
Proof. Let (p(x, y)e I:Ig'V(Q). By Theorem 2 and embedding (7), for f(X, y) (0+ 0+(PXX y it satisfies to

estimate the difference (Zlh,n fj(x,y). Since (p(x, YXx=o, y=0 =0, according to (9) we have f(x, y):\l/(x, y), where

\V(X, y) is the function from (9). the main moment in the estimations is to find the corresponding splitting which allows to derive
the best information in each variable not losing the corresponding information in another variable. The suggested splitting runs as

follows
11 11 9
(Ah,n f)(X, y)=(Ah,n \Ifj X, y = ZTk
k=1

sl el oy g, s bt
(x+h)" - g(x,y—s)—g(x, y)

ds +

" r(a+1)r([3) S ey

%j la(c—t,y)- g )i+ by -t

X oty ) g yls +n s s+

C(a+1)r@);

1 0 0
e | tr e

oy [Besgxy)
PR .['([ ( (h+t;“ [(s+n)ﬁ‘1—sﬁ’1]dtds+

T (X_t’ _ gj(X, Y [(t +h)* —t“]dtds+

ijl.(At sgjxy[h+t)"‘l —t* 1Is+n)Bl s 1]dtds
0 0
Y,y

where h, n>0; X,X+he [O b] +n1¢€[0,d] and g(x y) is the function from (12). The validity of this representation

may be be chacked directly.
Since §D(X, y) € Hoﬂ’y, we have

lg(x,y)= (lAlx y (pj(o, O)( <Cx'y’ (16)

and then
‘Tl‘ ska[(ijh)“ —x“JyY[ (y+nf - yBJ,

|-|—2|3Cyv[(y+1'l)[3 - yﬁ]j.( | | )1
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0 ||Y

T <Cx* [(x +h)* - x“]_[ G

|T|<Cy[y+n)‘3 yﬁ]j ‘ t+h)t -t

ds,

dt,

T, <Cx* [(x +h) - x“]j s7

0

(s+m)f™- sﬁ’l‘ds .

For Tg — Tg we similaryly, make use of

11 11 ALty
(AL ) g)(x, y)1 _ ‘[A . (pj(x, y)( <l )

0 an obtain

T=c/ (h+t)1 dtfn s,+n)1B
T, < CI | dtj sy‘ (s+n)ft-s* l‘ds

4 s’
ffs|<Cf e+ hyt -t 1dt_jn - S s,

|T|<Cj ‘h+t) ot t‘”dt_[ s'|(s+mf " —s* 1‘ds
after which every term is estimated in the standard way, and we get
[Xh,n fj(x, y* <C,h*on"P, (18)

This completes the proof.

MAPPING PROPERTIES OF THE MIXED FRACTIONAL DIFFERENTIATION OPERATOR IN HOLDER SPACES

Theorem 4. Let f(X,y) e H~“(Q), o <A <1,B<y<1. Then for the mixed fractional differential operator (2) the
representation

s _ 1 (00) wi(x)  w,(y)
e e e B
and
w0 <CX, () <Gy, (20)
lw(x, y)| <Cxy? (21)
where

f(x.0

f0)- (10),
t)(x+l

vy (X) =

Beel 1
vo(y)= foy I
ol

r)“ﬁ

Axtny(tO) dt

t)1+u+
B y Xy dtdt
5 [Bor Joo vt !ﬂ S G

v = g B fj(o 0)+

o'—.x
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Proof. Representation (19) itself is easily obtained by means of (3). Since f e H M(Q), inequalities (2) are obvious.

Estimate (21) is obtained by means of (6) and (8).
Theorem 5. Let f(x,y)e HZ*™7*(Q), <A <1, B<y<1. Then the operator DA,

Hg ™ *(Q) into Hg"(Q).
Proof. Since f(X, y) e Hj 7P (Q) by (19) we have

o(x y)=(D5%.  \x, y)=v(x.y).
By (6) and (8) we have

continuously maps

11
(Ax, y f j(o,o){ < CxO+a) y=0)r+h) < mjn {x““, y“ﬁ}. (22)
Let h>0; x,x+h e[0,b]. We consider the difference
(Zlh,y fj(0,0) (le,y fj(0,0)
wx+hy)-w(x y)= + L1l
yP(x+h)* yP (x+h)* x*
11 11 11
X (A fj(x,o) (A f j(t,o) y (A fj(o, )
+fij—————————dt+f£ dt + P dt+
yP e (x+h-t)™ y» 4 (x+h-t)™ (x+h)d  (y—-1)?F

7)

+&i(2x o ol n- -t B ey - ]I(A “ifo

(y-<f”
11 11
[A fj(x,r)dtdr (A f)(x,r)dtdr
+af

(x+h—tf*(y <" I ! (x+h—tf“(y—7)"

+

+
Q
I =
R ot— <
O e <

dt+

+ OLBJ _[ G- [(X +h—t) " —(x—t)* ]dtdr . (23)

We make use of (22) with © =1and obtain

1 1 f dt
h <C - h7\.+(l =
vl y)-wliy) {x+h x+h)°‘ xa}r ;[(x+h—t)”°‘+
x+h X k+a 1 5
dt|=) @
+~[ (x+h- t)”+~([ {x+h t) (x—t)““} } kZ:; “

For @, we have

h o
@, =Ch*| — | <ch*
X+h
Let’s estimate (I)z. Here we shall consider two case: X<h and X>h . In the first case,
‘G{* —6‘2“ S|Gl—02|“, (, # 5,) and obtain

x*h®

P®,<C <Ch*,
T (x+h)
in second case, using (1+t)* —1<at, t >0 we have
Xxm 1h
®,<C,———<Ch".
(x+h)

For @, we have:
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©dt

®, < Ch"**| ———<Ch".
3 1 '([(t + h)1+a
For @,
x+h
®,=C, [(x+h-t)"dt=Ch".
For @,

x/h 1 1
CDs = Clhx j tk%(l+t)1+a - tl+a|
0

Gathering the estimates for @, k= 1,_5 we obtaint
lp(x+hy)—y(x yj<Ch.

Rearranging symmetrically representation (12), we can similarly obtain that
w(xy+n)-wix y)<Cn'.
Theorem 6. Let f(x, y)e I:|3+°"V+ﬁ(Q), a<A<LB<y<l. Then the operator D§;%, continuously maps
HQW'“B(Q) into I:ISV(Q)

Proof. Let f(X, y)e ﬁg*a’”ﬁ(Q). Then we have (p(x, y):(Dg‘fmeX, y):\|1(x, y), where \V(X, y) is the
function from (9). The main moment in the estimations is to find the corresponding splitting which allows to derive the best
information in each variable not losting the corresponding information in another variable.

Let h,7 >; x,Xx+he[0,b], y,y+7n €[, d]. We consider the difference

(thj(x,y)=§% ] (Kh,n fj(x,y) +(Zlh,y fj(x,O)[ L1 }

= ) A (T S K

(Z’lx,nf](o,y) L1 . L yﬁl(ymi
Ty {MM*(A“fJ("’f’{x—fm%‘m}*

g v (Xh, yinr f)(x,r) Aoy fj(x, y)

dt <Ch*.

B y
MRl e e ey e
+ lAlx, y+n-t f (0, ‘C)
1 1 ”( )
+B{F_(X+h)“}y (y+n-1f" e
B (4 1 1
ey (Gle fj(“’[w—r)“ﬁ (y+n—r)”ﬁ}dr+

dt +

1 1 Ty (lAerTl f j(oa Y) x+h (lAth—t,n f j(t, y)
+B _[ dt+
x* (x+h) J5 (y+n=o" " (y+nf 5 (x+h-t)™
1 1 |p(u 1 1
l x+h (le+h—t,y fj(t,O)

+ a B.[ " dt+0€i— ! 5 T
(y+nfs (x+h-t)™ Y (y+nfJs (x+h-t)™

dt +
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Sord | G y{(x T hl—tw}‘“ ’
WIS C) O

f (y+nf Jo (x+h-t)"
Hﬁ}f [ f)‘t"){(x T }d“
Xy (?imn f)(x,y)dtdr Yy (iimy+n1‘fj(x,r)dtdr
*! !(x+h—t)1+°‘(y+n—r)1+f’+£ J;(x+h—t)”°‘(y+n—r)1+ﬁ+

X Y (Ah y—1 ](X T) 1 1
+ - dtdt +
! ! x+h—t)™ Ly—rfﬁ (y+n—rfﬁ}
11
x+h y (Ax+h -t,n jt y dtd’[ x+h y+n (Ax+h—t,y+n—r fj(t,T)dth
(=t (ysn-1" 1§ xeh—tF*(y+n-1)"
x+h Y (Ax+h—t,y—t fj(t,'l?) 1 1
— 5 o dtdt +
o (x+h=tf [(y-7f" (y+n-1f

(let,n f)(t’ y){( 1 1 }dtdw

(y+n—-1)" [ (x=t)* - (x+h—t)
11

+i yj[ (AX . fj(tﬂ)( Lo L }dtdrjt

(y+n-of" [t (x+h-tf

+II(XX”Tfj&ﬂ{@«if”_Kx+h{¢Y”]ky;ifﬁ_(y+{{tf*}md“

The validity of this representation may be checked directly. Since f (X, y) S ﬁo“(Q) , we have
11 25 hn? h*y" |: 1 1 :|
An, X,Y)I<H> WP |<C + i
O O LR Fenr e P orey
+ﬂ{i_;}+xxyy[i_;}{i_;}
(y+nfLx* (x+h) X* (x+h)' Ly" (y+n)f

+
hxnv y dr { 1 1 }ym 1
=+ X = ——— | [(y+n—1) " Pdr+
h ! ~ x* (x+h) {

' mﬁiw_wkwiw_0+iﬂf4m+

Jy. dr n'o XJthx+h—t)x_1_°‘dt+
0
1

y

+

+

+

O e <
O ey <

(y+n-1)* (y+nf

*Xkﬁ{x%mh) o915
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(th ¢ 1 1 X r—l—o
- - h—t dt
Ix+h o { (y+n)ﬁ}j(x+ F
L }dt+

TR e

1 1 0 dt
+och*y{—— } — +
y? (y+n)B I(X+h—t)“‘

+ay’ JX' — ! dt +
B y+n)B . (x— t)““ (x+h-t)*
¢ dtdz < e h*dtdrt
h*n?
’ ”me F(y+n— 1)1“! f (x+h—tF“(y+n—tf""

'—.

X Yy hk Y |: 1 1 :|
+ dtdr +
! > (x+h- t)““ (y—of" (y+n-o)”
8 11
h Y (Ax+h—t,n fj(t, y)dtdt .y (Am_t,ym_r fj(t,r)dtdr
> (x+h=t)"*(y+m-1)7? " Y (x+h=t)"*(y+n—-1)"

x+h Yy I 4
ST (y-1) _{( t 1 +B}dtdw
0

y—t)"* (y+n-1f

+ +

1 1

+X [ x=tm - T+
H<y+n—r>“ﬁ[<x—t>““ i

+_X[ thn ( 1 _ L dtdt +
>y (y+n- r)“‘”Lx tf*  (x+h-t)™

1 1 1

+E I(x —t)f (y- r)v[(x _1t)1+a “h }{(y B < - }dtdr} .

After which every term is estimated in the standard way, and we get

11
(Ah,n cpj(x, y* <C,h'n’
This completes the proof.

Main theorem. The mixed fractional integral operator Ic‘;‘f0+ isomorphically maps the space I:|§'V(Q), 0<A, vy<1

onto the space I:-|3+°"erB (Q).if A+a<land y+p<1.
Proof. We should consider, as usual the following three parts of the proof:

1) Action of the mixed fractional integral operator from the space I—~|OM(Q) to the space I:|0M°"”B (Q)
2) Action of the mixed fractional differentiation operator from the space I:-IOMO"Y+B (Q) to the space I:|OM(Q)

3) The possibility to represent any function f (X, y) € HNOMO"Y+B (Q)as (Ig‘;,+(pr, y) with the density in I:|O“(Q)
Because of (1) the parts 1) -2) are covered by Theorems 3 and 6. The part 3) is treated in the standart way in case 0 <o <1 and
0 < B <1 by using the possibility of similar representation with the density from pr (RZ), p= (pl, pz). See [1] Theorem 24.4.
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