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INTRODUCTION  

Various forms of fractional integrals and derivatives are known. Fractional integrals and Riemann-Liouville derivatives 

are the most common in the scientific literature [1]. Operators of generalized fractional integro-differentiation with Gauss 

hypergeometric function. 

Direct extension of the Riemann-Liouville fractional integro-differentiation operations to the case of many variables, 

when these operators are applied for each variable or some of them, gives the so-called partial and mixed fractional integrals and 

derivatives. They are known [1], as well as [4], [5], [6], [7], [8], [9], [10], [11],  [12]. Thus, in [2], using the two-dimensional 

Laplace transform, a solution of the two-dimensional Abel integral equation was obtained. 

 In this paper, we study the question of the composition of the mixed fractional integral and the mixed fractional 

derivative in sufficiently broad class of functions. The treatment formula for the mixed fractional derivative is obtained. The 

results obtained can be applied in the theory of differential equations containing the mixed fractional derivatives.  

Lemma 3 on the representability of     mnACyxf ,,  function in the form of (6) and Lemma 4 generalized is 

the previously known Lemmas 1 and 2 for the two-dimensional case. Lemmas 3, 4 permit to prove the theorem (a necessary and 

sufficient condition for the representability of  yxf ,
 
function as the mixed fractional integral of a summable function) and 

Theorems 2 and 3 about the composition of a mixed fractional integral and a mixed fractional derivative. Note that Theorems 2 

and 3 generalize the results of Theorem 2.4 [1, p. 44] for the two-dimensional case. 

  

PRELIMINARY INFORMATION AND NOTATION 

The important role in the theory of fractional integro differentiation is played by absolutely continuous functions. 

Let     dcbadycbxayx ,,,:, . 

Definition 1 [1, p. 2].  xf  function
 

is called absolutely non-discontinuous into segments ],[ ba , if for any 

0 there exists 0  such that for any finite set of pairwise non-intersecting intervals   ],[, baba kk  , mk ,1 ,  

such that   


m

k

kk ab
1

, the inequality     


m

k

kk afbf
1

 holds. The space of these functions is denote by 

 ],[ baAC . 

Definition 2 [1, p. 2]. Let us denote by  ],[ baAC n
, where ...,2,1n , the spaces of functions  xf  which have 

continuous derivatives up to order 1n  on ],[ ba  with 
    ],[1 baACxf n 

. 

Definition 3. A function  yxf ,  is called absolutely continuous in  , if for any 0  there exists 0  such 

that for any finite set of pairwise non-intersecting intervals   kkkkk yyyxxxyx 2121 ,:,  , the sum of 

the areas of which is less  , the inequality holds 
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n

k

kkkkkkkk yxfyxfyxfyxf
1

11211222 ,,,, ,  (1) 

and if, moreover,    ],[, dcACyaf 
 
and    ],[, baACcxf  . The class of all such functions is indicated 

 AC . 

Definition 4. By  mnAC ,
, where ...,2,1n , let us denote the class of functions continuously differentiable on 

  up to order  1,1  mn , and its mixed partial derivative 
11

2








mn

mn

yx

f
 is absolutely continuous in  . 

It is known that the class  ],[ baAC n
 belongs to those and only those functions  xf  that are representable as 

antiderivatives of Lebesgue summable functions: 

       baLxCdxxxf
x

a

,, 1  .   (2) 

 Lemma 1 [1, p. 39]. The space  ],[ baAC n
 consists of those and only those functions  xf , which are represented 

in the form 

 
 

     










1

0

1

!1

1 n

k

k

k

x

a

n
axCdtttx

n
xf ,    (3) 

where    ],[1 baLx  , kC  being arbitrary constants. 

In the formula (3) 

     
  

!
,

k

af
Ctft

k

k

n  .      (4) 

The last equality uses the notation 
  

 
n

n
n

dx

xfd
xf  . 

A similar property of the functions    ACyxf ,  is as follows. 

Lemma 2 [3, p. 238]. The class  AC
 
consists of those and only those functions  yxf ,

 
which are represented in 

the form 

         Cdssdttdtdsstyxf

y

c

x

a

y

c

x

a

  ,, ,   (5) 

Where            ],[,],[,, 111 dcLybaLxLyx  , and C  is an arbitrary constant. 

In order to generalize the last lemma to the case of a class  nnAC ,
, we need the following lemma. 

Lemma 3. Let    ACyxf , , then  

 
   

  
   

  
   









y

c

n

i

i
i

mn

mnx

a

ax
i

yaf

sytx

dtdsstf

mn
yxf

1

0

0,

11

,

!

,,

!1!1

1
,  

  
 

  
    














1

0

1

0

,1

0

,0

!!

,

!

,m

k

m

k

ki
kin

i

k
k

cyax
ki

caf
cy

k

cxf
.  (6) 

In formula (6) the notation used  
  

 
ki

ki
ki

dydx

yxfd
yxf

,
,,



 . 

  Proof. Let be  







AC
yx

f
mn

mn

11

2

. By virtue of Lemma 2, we have 
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       011

2

, Cdssdttdtdsst
yx

f
y

c

x

a

y

c

x

a

mn

mn









  

 (7) 

Integrating sequentially (7) times 1n  by x  and times 1m  by y , we get 

 
   

      


 


y

c

mn
x

a

dtdsstsytx
mn

yxf ,
!1!1

1
,

11
 

 
   

   
 

   
    









 





 y

c

m
nx

a

n
m

dsssy
mn

ax
dtttx

mn

cy 1
1

1
1

!1!1!1!1
 

     









1

0

1

0

~
m

k

k

k

n

i

i

i cyxaxy ,    (8) 

where        1,0~,1,0  mkxniy ki  is arbitrary function. When integrating, the well-known for n  - 

multiple integral formula is used [1] 

 
 

   






x

a

n
x

a

x

a

x

a

dttFtx
n

dxxFdxdx
1

!1

1
... ,   (9) 

proof, which is easy to implement by mathematical induction. It will be clear from the proof that an arbitrary constant in formula 

(7) is associated with arbitrary functions of formula (8) by the relation 

          0

1

1

1

1
~!1!1 Camcn n

m

m

n  





 . 

Since     mnACyxf ,, , then derivatives  mkni
yx

f
ki

ki




 

0,0

 

exist and are continuous in  . 

Calculating the derivatives with x  respect to the order 1,0 n
 
of the function  yxf ,  given by formula (8), and assuming in 

them ax  , we obtain the equalities 

 
      2,0,~!

, 1

0










nicyayi
x

yaf m

k

ki

kii

i

,   (10) 

 
 

 
 

       




















 1

0

1

111

1

~!1
!1

1, m

k

kn

kn

y

c

mn

n

cyayn
sy

dss

mx

yaf
. (11) 

Similarly, differentiating (8) by y  and assuming cy  , we obtain the equality 

 
      2,0,~!

, 1

0










mkaxcxk
y

cxf n

i

ik

ikk

k

 ,   (12) 

 
 

 
 

       




















 1

0

1

111

1

~!1
!1

1, n

i

im

im

x

a

nm

m

axcym
tx

dtt

ny

cxf
 . (13) 

Expressing from formulas (10) - (13)  yi  and  xk
~

 
respectively, we get 

     
        













  

















1

0

1

0

1

0

1

0

~,

!

~
n

i

m

k

ki

ki

iim

k

k

k

n

i

i

i cyx
x

yaf

i

ax
cyxaxy  

       
 

   
 

 























   









y

c

m
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k

n

i

ik

ik

kk

sy

dss

mn

ax
axy

y

cxf

k

cy
1

11

0

1

0 !1!1

,

!
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1
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1

1
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!!1!1

m

k
k

kkn
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mn
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 x

a

n

my

c

m

n

tx

dtt

mn

cy

sy

dss

mn

ax
1

1

1

1

!1!1!1!1
 

   
     
















 





1

0

1

0 !

~

!

m

k

i

k

k

iki
n

i i

a

k

c
cyax .   (14) 

Calculating the mixed derivatives 
ki

ki

yx

f



 

 

of the function (8) at a point  ca, , we get 

       
!

~

!

,

!!

1

i

a

k

c

yx

caf

ki

i

k

k

i

ki

ki 







 

.    (15) 

Substituting (14), (15) into (8), we get 

 
   

 
   

 
  











 






1

0
11

,

!

1,

!1!1

1
,

n

i

i

i

iy

c

mn

x

a

ax
x

yaf

isytx

dtdsst

mn
yxf  

 
 

 
   
























1

0

1

0

1

0

,

!!

1,

!

1 m

k

ki

ki

kin

i

m

k

k

k

k

cyax
yx

caf

ki
cy

y

cxf

k
.  (16) 

Equality (6) follows from (16) and from the fact that  
 

mn

nm

yx

caf
yx






 ,
, . The lemma is proved. 

The following lemma gives a description of the class  mnAC ,
. It generalizes Lemma 1 to the case of two variables 

and Lemma 2 to the case 2mn . 

 Lemma 4. The space  mnAC ,
 consists of those and only those functions  yxf , , which are represented in the 

form 

 
   

      


 


y

c

mn
x

a

dtdsstsytx
mn

yxf ,
!1!1

1
,

11
 

 
 

   
 
 

    








 











y

c

m
n

i

ix

a

k

n
m

k

k

dsssy
mi

ax
dtttx

kn

cy 1
1

0

1
1

0 !1!!!1
 

   









1

0

1

0

m

k

ki

ik

n

i

cyaxC ,    (17) 

where        ],[,, 11 baLxLyx k    1,0  mk ,      1,0,],[1  nidcLy ,  ikC  being 

arbitrary constants. 

 Proof.  Necessity. Let     mnACyxf ,, . According to the lemma 3 

 
   

  
   

  
  


 






1

0

0,

11

,

!

,,

!1!1

1
,

n

i

i
iy

c

mn

mnx

a

ax
i

yaf
dtds

sytx

stf

mn
yxf  

        

  
 

  
   














1

0

,1

0

1

0

,0

!!

,

!

, m

k

ki
kin

i

m

k

k
ik

cyax
ki

caf
cy

k

cxf
. (18) 

Because 
     ACyxf mn ,1,1

, then 
    ],[,1,1 dcACyaf mn 

, consequently, 

    ],[,0,1 dcACyaf mn 
, from here 

    ],[,0, dcACyaf mi    1,0  ni . Use lemma [1, с.39] 

  
 

 
 

  
 














1

0

,

1

0,

!

,

!1

1
,

m

k

k
kiy

c

m

ii cy
k

caf
ds

sy

s

m
yaf   (19) 
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where    ],[1 dcLyi  . Then  

  
 

 
 

 
 

  
    .

!!

,

!1!!

,

1

0

,1

0

1

1

0

1

0

0,



































m

k

ki
kin

i

y

c

m

i
n

i

i
i

n

i

i

cyax
ki

caf

ds
sy

s

mi

ax
ax

i

yaf

  (20) 

Similarly, it is proved that 

  
 

 
 

 
 

  
    .

!!

,

!1!!

,

1

0

,1

0

1

1

0

1

0

,0



































m

k

ki
kin

i

x

a

m

k
m

k

k
k

m

k

k

cyax
ki

caf

dt
tx

t

nik

cy
cy

k

cxf

   (21) 

where    ],[1 baLxk  . Substituting (20), (21) into (18), we obtain the formula  (17), in which 

  caf
ki

C ki

ik ,
!!

1 , .    (22) 

 Sufficiency. When calculating directly 
ki

ki

yx

f



 

  mkni  0,0 , it is easy to make sure that they are all 

continuous in  , and 

     

    .!1!1

,

1,1

11

2















mn

y

c

x

a

y

c

x

a

mn

mn

сmn

dssdttdtdsst
yx

f

   

  (23) 

Obviously  







AC
yx

f
mn

mn

11

2

, from where it follows     mnACyxf ,, . 

The theorem is proven completely. 

Notice, that 

     ;,, , yxfyx mn     (24) 

     1,0,,,  mkcxfx kn

k ;   (25) 

     1,0,,,  niyafy mi

i ;    (26) 

  caf
ki

C ki

ik ,
!!

1 , .    (27) 

 Definition 5 [1, с. 459]. Let     1, Lyxf . The integral 

  
   

 
    







y

c

x

a

ca
sytx

dtdsstf
yxfI

11

,

,

,1
, ,   (28) 

where 0,0  , is called a left-hand sided mixed Riemann-Liouville fractional integral of order  , . 

 The fractional integral (28) is obviously defined on functions     1, Lyxf , existing almost everywhere. 

Using the Fubini theorem, the semigroup property is proved. 

Let     1, Lyxf ,  ,,,  be positive numbers, then equality holds almost everywhere in   

 .,

,

,

,

,

, fIfII cacaca











 
   

  (29) 

It can be shown that if 0  function  yxf ,
 
is defined in   and     1, Lyxf , then 
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      baxdcLyxI xa ,],[, 1, 

 ;       dcybaLyxI ya ,],[, 1, 


. 

In the last equations fIfI yaxa







 ,, ,  are partial Riemann – Liouville fractional integrals with respect to the variables 

x  and y , respectively. 

Taking these equalities into account, it is directly verified that 

        yxfIyxfIIyxfII caxaycycxa ,,, ,

,,,,,



















  .  (30) 

 Definition 6 [1, с. 460]. For function  yxf , , given on  , formula  

  
   

 
    












y

c

mn

x

a

mn

mn

ca
sytx

dtdsstf

yxmn
yxf

11

,

,

,1
,D   (31) 

where 0,0  , is called a mixed Riemann-Liouville fractional derivative of order 

  1][,1][,,  mn . 

 If the function  yxf ,  has a property  



mnmn

ca ACfI ,,

, , then the order of taking the derivatives in (31) 

does not matter, and 

    

 1

,

, , LyxfcaD  . 

Definition 7 is a two-dimensional analogue of Definition 2.3 [1, p. 43]. 

 

COMPOSITIONS OF MIXED FRACTIONAL INTEGRAL AND MIXED FRACTIONAL DERIVATIVE OF 

THE SAME ORDER 

Following [1, p. 44], we define the following classes of functions. 

 Definition 7. Let  1

,

, LI ca



  denote the space of function  yxf , , represented by the left-sided mixed fractional 

integral of order  ,  of a summable function:   

 1

,

, , LIf ca . 

 Definition 8. Let 10,10  . A function     1, Lyxf  is said to have a summable fractional 

derivative fca





,

,D , if   



mnmn

ca ACfI ,,

, . 

The following theorem defines the necessary and sufficient condition for the unique solvability of the two-dimensional 

Abel integral equation. 

 Theorem 1. In order that     0,0,, 1

,

,  

 LIyxf ca , it is necessary and sufficient that 

 

mn

mn ACf ,

,
,    (32) 

where 1][,1][  mn , and that 

    1,0,0,0,

,  niyaf i

mn
;    (33) 

    1,0,0,,0

,  mkcxf k

mn
 ;    (34) 

    1,0,1,0,0,,

,  mknicaf ki

mn
.    (35) 

 Proof. Necessity. Let   

 1

,

, , LIf ca .  In view of the semigroup property  

   







,

,

,

,, , ca

mn

camn IfIyxf ,   (36) 

where   1L . From here follow feasibility conditions (33) – (35). Feasibility condition (32) follow from Lemma 4.  

This implies the fulfillment of conditions (33) - (35). The fulfillment of condition (32) follows from Lemma 4. 

 Sufficiency. Under condition (32), we can present  mnf ,  according to Lemma 3, in the form 
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c

mn
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sytx

stf

mn
yxf

11

,

,

,

,

!1!1

1
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cyax
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caf
,     (37) 

where 
    1

,

, Lf mn

mn
. Taking into account conditions (33) - (35), the last equality is written in the form  

 
   

   

    







y

c

mn

mn

mn
x

a

mn dtds
sytx

stf

mn
yxf

11

,

,

,

,

!1!1

1
, .  (38) 

 Using the semigroup property (29), we can write 
   mn

mnca

mn

ca

mn

mn

mn

ca

mn

ca fIIfIfI ,

,

,

,

,

,

,

,

,

,

,

, 











  .   (39) 

From here 
   0,

,

,

,

,

,  









mn

mnca

mn

ca fIfI . Applying the integral to this equality 




,

,caI , we get  

   0,

,

,

,

,

,  



 dxdyfIfI mn

mnca

mn

ca
.    (40) 

From here 
      



 1

,

,

,

,

,

, , LffIf mn

mn

mn

mnca
. The theorem is proved. 

 Note that Theorem 1 is a generalization of Theorem 2.3 [1, p. 43] in the case of two variables. From it, in particular, it 

follows that the class of functions having a summable fractional derivative fca





,

,D  in the sense of Definition 8 is wider than 

the class of functions  1

,

, LI ca



 . Namely, the class  1

,

, LI ca



  owns only those functions that have a summable fractional 

derivative fca





,

,D , for which equalities (33) - (35) hold. 

 Theorem 2. Let 0,0  . Then equality  

 yxffI caca ,,

,

,

, 





D      (41) 

performed for any summable function  yxf , . 

 Proof. We have 
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Changing the order of integration, we get 
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11
,

,

 

 yxf , ,      (43) 

Q.E.D. 

 Theorem 3. For any function    1

,

,, LIyxf ca



  the equality 

 yxffI caca ,,

,

,

, 





 D ,     (44) 

and for any function that has a summable derivative fca





,

,D  (in the sense of definition 8), the equality 
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where   fIyxf ca



  ,

,, , . 

 Proof. Let    1

,

,, LIyxf ca



 , then    



,

,, caIyxf ,     1, Lyx . Based on Theorem 2, we have  
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Let now  
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By the semigroup property, the equality 
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From the last equality it follows that 
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from where, redesignating the summation index, we get 
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Equality is obtained similarly 
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It is not difficult to see that 
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Taking into account equalities (48), (51) - (53), equality (47) is written in the form 
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By grouping the terms, we get 
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In the right-hand side of equality (55), under the integral is a summable function. Applying the operator 
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,caI  to both parts of 

equality (55), we obtain 
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Under the integral on the left side of the equality is the summable function, and the right side of the equality is absolutely 

continuous. Finding the mixed derivative 
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 of both parts of the equality, we get 
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The theorem is proved. 
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