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Abstract: The rapid advancement of digital technologies has made cybersecurity essential for safeguarding computer systems and 

networks. It involves techniques and algorithms to prevent unauthorized access, data breaches, and malicious activities while 

ensuring data security and privacy. A multi-layered defense on the host, application, network, and data levels is essential and 

continually enhanced to suit challenging cyber threats. With attack patterns getting increasingly advanced, cybersecurity has become 

a core element that supports trust and resilience in the digital age. This paper used the benchmark NSL-KDD data to consolidate an 

efficient cyber threat detection system. Data preparation includes filling in missing values, removing duplicates, cleaning up noise, 

one-hot encoding, normalizing, and using Random Forest to improve feature selection for a better model performance.  Training 

and testing were conducted using deep learning and machine learning techniques such as ANNs, SVMs, DTs, and RNNs (Recurrent 

Neural Networks).   At 96% accuracy, 92% precision, 93% recall, and 92% F1-score, RNN was the most successful model out of 

all that were evaluated. The findings indicate that combining feature selection and innovative deep learning methods remarkably 

enhances the detection accuracy, robustness and as such supports the increase in cybersecurity and securing against emerging cyber 

threats. 

 

Keywords: Anomaly Detection, Cyber Threat Detection, Network Traffic Patterns, Intrusion Detection System (IDS), NSL-KDD 
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1 INTRODUCTION 

 

The growing digitalization of industry and the increasing number of connected devices have significantly changed the face of 

contemporary business operations. All this digital transformation has enabled the activities of the IoT, cloud computing, and other 

digital platforms to grow exponentially, resulting in a complex and connected environment where continuously-developing data is 

exchanged [1][2][3]. As much as these developments have increased efficiency and innovation [4][5]This has led to new 

vulnerabilities, as industries are now more susceptible to cyber risks. The increasing dependence on digital infrastructure has also 

been accompanied by a sharp rise both in the sophistication and in the prevalence of cyberattacks, as cybercriminals take advantage 

of these vulnerabilities using continually more innovative practices [6][7][8]. 

 

Cybersecurity has become one of the pillars of the contemporary digital environment and has helped protect important information 

and intellectual property as well as critical infrastructure against malevolent activity [9]. The exponential growth of connected 

devices, our increasing dependence on cloud-based systems and IoT networks, and the resulting increase in the attack surface 

provide a perfect opportunity for sophisticated cyberattacks to exploit this weakness [10].  

 

Conventional cybersecurity strategies effective in combating a particular set of threats would fail to keep the pace with the dynamism 

and complexity of contemporary cyberattacks [11]. This is illustrated by the fact that signature-based malware detection systems 

are unable to identify threats that have not been previously described, such as zero-day exploits or advanced persistent threats (APTs) 

[12]. Due to this, there is an increasing need to develop new solutions that can adjust and respond in a proactive manner to changes 

in cyber activity[13]. 

 

Since machine learning and big data analytics came along, supervised machine learning has been used as an alternative way to find 

hacking threats in real time [14][15].  ML is rapidly maturing into a technology that has the potential to revolutionize hacking 

techniques, particularly for the purpose of detecting threats in real-time.  Traditional security methods might not be enough to stop 

cyberattacks because they are so advanced [16][17].  ML and big data analytics have been very important in making security systems 

able to find and stop threats in real time [18]. The speed and the amount of processed data provided by ML algorithms enable 

recognizing trends and anomaly and thus potentially recognizing the appearance of cyber threats. Machine learning can present a 

very viable alternative, and has superior features of locating, tracking and responding to threats with less inaccuracy and at higher 

speed [19].   

 

1.1 Motivation and Contribution 
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The rationale of the research is the increasing demand in ensuring effective cybersecurity to mitigate the high number of advanced 

cyberattacks that are posing a global threat to systems, organizations, and individuals. The conventional security systems lack the 

ability to recognize new and sophisticated intrusion behavior and therefore, Intrusion Detection Systems (IDS) are necessary as an 

additional protection with respect to security. Despite this, many challenges exist with regard to the effective use of IDSs, including 

proper data preprocessing, selection of features, and application of learning schemes that can model complicated designs within the 

network traffic. By using the NSL-KDD dataset and orchestrating feature selection with the current models advanced technology 

like Recurrent Neural Networks (RNN), this study help improve the accuracy, reliability and efficiency in cyber threat detection, 

which eventually can heighten defensive cyber security during a most proactive way. The proposed research has the following major 

contributions to the subject of network security: 

 

• Developed and tested intrusion detection models using the NSL-KDD dataset. 

• Performed systematic preprocessing procedures, such as missing values treatment, removal of duplicates, noise 

elimination, one-hot encoding, and normalization in order to obtain high-quality input data. 

• Used RF-based feature selection to expedite computations, remove duplication, and identify most important features. 

• Demonstrated the applicability of the optimized framework of detection in real-life settings to enhance cybersecurity 

against dynamic malicious and sophisticated attacks. 

• Constructed a RNN model that can be trained to recognize patterns in network traffic that occur sequentially and over time 

in order to effectively identify cyber threats. 

• Ensured complete analysis by evaluating model performance using numerous measures, including recall, accuracy, 

precision, F1-score, and ROC. 

 

1.2 Justification and Novelty 

 

Traditional intrusion detection methods have its flaws, such as a propensity for false alarms, redundancy, and an inability to adapt 

to emerging cyber threats. These shortcomings provide the rationale for this study.  Incorporating a range of advanced preprocessing 

approaches, feature selection with RF, and the RNN model, this study introduces a new framework that achieves the optimum 

balance of accuracy and performance. The innovation lies in the inclusion of optimized feature selection with the sequential learning 

capacity of RNNs, enabling the system to learn time patterns in network traffic that other models cannot recognize. The method not 

only saves on computational load but also leads to a powerful, more reliable, and scalable solution to current cybersecurity problem 

cases. 

 

1.3 Structure of the paper  

 

The structure of the paper is as follows: Section 2 surveys the relevant literature; Section 3 details the technique, including the 

dataset, preprocessing, and models; Section 4 presents the findings and examines them, while Section 5 provides conclusions and 

recommends more research. 

 

2 LITERATURE REVIEW  

 

Several important research studies in cyber threat detection to augment cybersecurity have been reviewed and assessed to inform 

and reinforce the formulation of this work. 

 

Bavadiya et al. (2025) proposed a model that combines CNN-LSTM, RF, and autoencoders to enhance anomaly classification and 

detection. The Microsoft Malware Dataset, publicly available, was used as training and evaluation dataset. The AE-RF module 

trains on the normal behaviors of the system to detect abnormal behaviors, while the CNN-LSTM model learns the spatial and 

temporal characteristics of the malware to identify execution patterns. This article ensures that all data is pre-processed, specifically 

through feature extraction, PCA, and SMOTE, to balance the classes and provide optimal output per model. The experimental results 

indicate the AE-RF has a 0.91 AUC and the CNN-LSTM has 0.94, thus reflecting that the unsupervised and the supervised methods 

collectively exhibit high level of classification accuracy [20]. 

 

Khule, Motwani and Chauhan (2025) . This paper presents an Adaptive Threat Intelligence (ATI) framework that combines real-

time model updates through incremental learning. The ATI framework does not require model retraining to accommodate new threat 

intelligence, as new intelligence is continuously integrated into the framework. The ATI framework uses a multilevel detection 

technique which includes an anomaly detection technique, behavior analysis and AI driven analytics technique. It also adheres to 

Zero-Trust security guidelines, which utilize continuous validation to prevent attacks from spreading. Experiments on actual 

datasets, such as threat logs from MITRE ATT&CK, demonstrate the efficacy of the proposed strategy, yielding noticeably higher 

detection rates than those of current techniques. ATI framework achieves an impressive 95.2% accuracy, 96.1% recall, 

and 94.8% F1-score, surpassing traditional models in detecting evolving APTs while reducing false positives [21]. 

 

Swetha and Merakapudi (2025) implement the two aforementioned unsupervised methods for detecting security abnormalities and 

new threats in real-time network environments. Results of this model evaluation are compared against standard supervised learning 

models, LR, LightGBM, and SGD Classifier using CICIoT23 dataset. The unsupervised hybrid model outperforms supervised 

models in accuracy measurements and maintains either equal or better recall and F1 score levels. The hybrid approach demonstrated 
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remarkable performance because it achieved 0.95 accuracy and 0.85 precision together with 0.94 recall and 0.89 F1 score, thus 

proving its effectiveness in detecting anomalies. The supervised models delivered accuracy measurements of approximately. Area 

under the ROC curve ratio between 0.87 to 0.89 and recall performance with a range of between 0.88 to 0.89 as well as F1 score 

with the highest measure of 0.89 [22].  

 

Vemula et al. (2024) Their proposed solution is an anomaly detection system in the form of adversarial generative networks (GANs) 

that would detect unusual network usage patterns that are characteristic of attempted intrusion. In contrast to conventional 

methodologies, GAN can provide an adaptable, data-driven cybersecurity solution with an impressive purity of 96%, with DL 

models (90 -94%), unsupervised ML (92%) algorithms, hybrid genetic approaches (88%), and traditional NSL-KDD-based 

approaches (83%). This implies that GAN models can be used as a possible substitute since they deliver prodigious advancements 

in the network security malicious sounds [23]. 

 

Kalra et al. (2024) The proposed contribution presents a new methodology to the issue of identifying abnormal actions in traffic on 

the network based on the realization of CNNs. The model is trained and tested on a full range of normal and malicious network 

activities in the CICIDS2017 dataset. With CNN-based, an impressive accuracy of 93.64% was achieved, indicating a significant 

improvement over existing detection method. The findings, containing figures of merit and performance curves, precision, recall, 

and F-1 score, and confusion matrices perform a detailed evaluation of the model efficiency [24]. 

 

Kandhro et al. (2023) present a novel method for using DL to identify cyber-physical system vulnerabilities and assaults. Within 

the suggested structure, DL is contrasted with discriminative algorithms that rely on unsupervised learning. To identify cyber threats 

in IIC networks powered by the Internet of Things, this research proposes a generative adversarial network. The results show that 

all forms of assaults are identified with a performance improvement of about 95% to 97% when using an epoch value of 25 and a 

dropout value of 0.2. This improvement is evident in terms of efficiency, reliability, and accuracy. When it came to detecting 

BruteForceXXS, BruteForceWEB, DoS_Hulk_Attack, and DOS_LOIC_HTTP_Attack on the NSL-KDD, KDDCup99, and 

UNSW-NB15 datasets, the output of well-known state-of-the-art DL classifiers achieved the highest detection rate (HDR) and 

maximum true rate (TNR).    Not only that, it protected private user and system information throughout training and testing [25]. 

 

Table 1 provides an overview of earlier research on cyber threat identification, highlighting novel models, datasets, significant 

findings, and the challenges encountered. 

 

Table 1: Summary of Previous Studies on Anomaly Detection for Cyber Threat Using Deep Learning 

 

Author Proposed Work Dataset Key Findings Challenges/recommendations 

Bavadiya et 

al., (2025) 

Hybrid AE-RF and CNN-

LSTM model for 

anomaly detection & 

classification 

Microsoft 

Malware 

Dataset 

AE-RF achieved AUC 0.91; 

CNN-LSTM AUC 0.94; 

Combining unsupervised & 

supervised methods improves 

detection 

Computational complexity; 

scalability to larger datasets 

Khule, 

Motwani & 

Chauhan, 

(2025) 

Adaptive Threat 

Intelligence (ATI) with 

incremental learning & 

Zero-Trust principles 

MITRE 

ATT&CK 

threat logs 

Achieved 95.2% accuracy, 

96.1% recall, 94.8% F1; 

Outperforms traditional APT 

detection 

Real-time adaptability requires 

robust infrastructure; may need 

optimization for large-scale 

enterprise deployment 

Swetha & 

Merakapudi, 

(2025) 

Unsupervised hybrid 

anomaly detection vs. 

supervised models 

CICIoT23 

dataset 

With a precision of 0.85, 

recall of 0.94, and F1 of 0.89, 

the hybrid outperformed LR, 

LightGBM, and SGD. 

Deployment in real-time IoT 

systems; scalability for high-

speed traffic 

Vemula et al., 

(2024) 

GAN-based anomaly 

detection for intrusion 

detection 

NSL-KDD 

dataset & others 

Achieved ~96% purity; 

Outperforms DL (90–94%), 

ML (92%), hybrid (88%), 

classical (83%) 

Training GANs is resource-

intensive, potential instability 

in adversarial learning 

Kalra et al., 

(2024) 

CNN for detecting 

abnormal network traffic 

patterns 

CICIDS2017 

dataset 

Accuracy 93.64%; 

Outperforms traditional 

models; Supports SDG 9 & 

SDG 16 goals 

Needs testing on real-time 

systems; limited 

interpretability of CNNs 

Kandhro et 

al., (2023) 

GAN-based method for 

detecting IoT cyber 

threats in CPS 

NSL-KDD, 

KDDCup99, 

UNSW-NB15 

95–97% accuracy; Strong 

TNR & HDR; Maintained 

confidentiality & integrity 

Requires fine-tuning GAN 

parameters; performance may 

vary across datasets 

 

3 RESEARCH METHODOLOGY  

 

This study's methodology begins with gathering the benchmark NSL-KDD dataset, which has been meticulously pre-processed to 

ensure reliable and high-quality data. The model's generalizability was enhanced during pre-processing by eliminating duplicate 

records, filtering out noisy data, and either removing or imputing missing variables.  To ensure consistency and uniformity across 
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all features and to achieve zero mean and unit variance, Used One-Hot Encoding for categorical characteristics and the 

StandardScaler for continuous features to prepare the data for ML.  Next, the RF algorithm was used to choose the features. This 

approach ranks features according to their importance, allowing for the identification of the most valuable ones for intrusion 

detection.  The data was split in half for the purpose of training and testing the models; one half was utilised for training and 

parameter tuning, and the other half was used for testing and validation.  The main model, an RNN, was finally introduced. Its 

ability to learn about sequential contexts and past event relationships makes it an ideal tool for understanding data patterns in time 

and sequential dependencies, both of which are crucial in determining whether network behavior is normal or abnormal.  The 

proposed model was evaluated using the following popular metrics: accuracy, precision, recall, F1-score, and ROC curves, to ensure 

that the method effectively generated recommendations and classifications for cybersecurity improvement.   Entire procedure of the 

methodology is shown in Figure 1. 
 

 

Figure 1: Proposed flowchart for Cyber Threat Detection 

 

Cyber threat detection flowchart for improved cybersecurity, with thorough explanations of each step, is provided below: 

 

3.1 Data collection 

 

The standard benchmark NSL-KDD datasets are utilized in this investigation.  While both sets of data have the same number of 

columns, the NSL-KDD has 551+ records, while the old set has 489.  Intrusion detection systems (IDS) were tested using this 

dataset to identify computer network attacks. Data visualizations such as bar plots and heatmaps were used to examine attack 

distribution, feature correlations etc., are given below:  

 

 
Figure 2: Binary classification 

Data preprocessing 

Handle missing values 

Removing Duplicate Entries 

Remove noise StandardScaler for Data 

Normalization 

Data splitting 

Training  

Testing  

NSL-KDD dataset 

One-Hot Encoding  

Results  

Feature selection with 

Random Forest 

Implement Recurrent Neural 

Network (RNN) 

Model evaluation accuracy, 

precision, recall and f1 score  
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The distribution of normal and abnormal labels throughout the dataset is shown in Figure 2.  Normal traffic is represented by 53.46% 

of the overall data, while aberrant traffic makes up 46.54%.  This almost equal distribution guarantees that the dataset accurately 

portrays both benign and harmful actions, which is crucial for developing trustworthy intrusion detection models. The balance helps 

prevent bias towards either class, enabling the model to effectively learn and generalize in distinguishing between normal behavior 

and potential cyber threats. 

 

 
Figure 3: Heatmap for NSL-KDD Dataset 

 

Figure 3 is a heatmap showing the dataset features' correlation matrix, where each column shows the correlation coefficient between 

two variables. The color scale ranges from dark shades indicating strong negative correlations to lighter shades representing strong 

positive correlations, with values close to zero shown in intermediate tones. The diagonal line consists of perfect correlations (value 

= 1) of each feature with itself. The heatmap reveals clusters of features that possess high interrelationships as well as remarkably 

independent features, yielding clues regarding redundancy and dependency, and possible multicollinearity across the dataset 

features.  

 

3.2 Data pre-processing  

 

The NSL-KDD data set was obtained, merged, and cleaned before being used in the data preparation process. The most important 

features were then selected.  All of the duplicate entries, missing values, and noise in the dataset were removed during the pre-

processing phase.  Labelling and normalizing the data were also done.  Below is a list of the preprocessing steps: 

 

• Handle missing values:  Missing values in a dataset can be handled using several techniques, including deletion, 

imputation (replacing with mean, median, mode, or other values), and more advanced methods.  

• Removing Duplicate Entries: Select the data range wants to delete, then go to Excel's "Data" tab, and last, click the 

"Remove Duplicates" button.  

• Remove Noise: Removing noisy data in machine learning is a crucial step in data preprocessing to improve model 

performance and generalization. 

 

3.3 One-Hot Encoding for Data Encoding 

 

Data encoding facilitates the efficient and effective handling of information by computers and other systems by transforming raw 

data into a predetermined format for storage, transfer, or processing.  One-Hot Encoding makes use of binary variables for every 

category to convert categorical data to a numerical form.   The numerical representation allows the model to learn the encoded 

attributes more effectively. 

 

3.4 StandardScaler for Data Normalization  

 

Given the different scales of each descriptor, the dataset was standardized using the StandardScaler () method to transform the data 

so that the mean of the resulting distribution is zero and the standard deviation is one. This transformation is achieved by subtracting 

the mean value of each observation and dividing by the standard deviation, as shown in Equation (1): 

 

𝑧 =
𝑥−𝜇

𝜎
        (1) 
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In the dataset, z represents the feature's converted value, x depicts the descriptors' original values, μ denotes the feature 's mean, and 

σ refers to its standard deviation. 

 

3.5 Feature selection with Random Forest  

 

The aim of feature selection is to construct a predictive machine learning model from a dataset by reducing the number of input 

characteristics and removing irrelevant or redundant ones. Then, the most relevant and helpful features are chosen.   Due of its 

inherent capacity to priorities features, RF, an ensemble learning method, is frequently used by many organizations for feature 

selection.   This method uses the decision tree structure of the forest to rank the attributes in order of significance when assessing 

the model's predictive potential.  

 

3.6 Data Splitting 

 

A training set and a testing set were created from the dataset so that efficiency could be measured.  80% of the time went into 

building the model and estimating its parameters, while the other 20% went into testing and evaluating its performance. 

 

3.7 Proposed Recurrent Neural Network (RNN) 

 

An RNN is a common kind of ANN in which the connections between the nodes produce a directed graph that contains information 

on the network's progress.  The most effective usage of RNNs is in time series data, which is why the most recent and earlier data 

regulations yield the greatest results.  A LSTM unit, which is used by RNNs, has an input gate, a forget gate, and an output gate 

within each memory cell [26].  To manage enormous data sets and address the gradient explosion issue, RNNs are used.  The 

computation of the current state made use of this memory property [27][28].  Consequently, RNN units take in two values: the 

current input value and the output from before.  One way to describe how RNN units’ function is as (2). 

 

𝑦(𝑡) = 𝑓(𝑥(𝑡) + 𝑦(𝑡 − 1))      (2) 

𝑥(𝑡) represents the input at the moment, 𝑦(𝑡) stands for the output at the moment, and 𝑦(𝑡 − 1) represents the output at the time 

before.  The symbol 𝑓(𝑥) represents the function that models this relation.  When it comes to RNN, the function 𝑓(𝑥) is a 

straightforward hyperbolic tangent function that causes nonlinearity due to its unstable gradient tendency.  When activation 

functions like the rectified linear unit function are not saturated, gradients can get arbitrarily big.  As demonstrated in figure 4, this 

model consisted of two recurrent layers and a single dense layer. 

 

 

Figure 4: RNN model structure 

 

A batch size of 128 is acceptable for the recurrent layers.  There are 100 units in each recurrent layer, and each layer contains 30 

time steps.  By taking the results from the recurrent layers, the dense layer may forecast how many questions there with a single 

value.  Within this design, RNN units are responsible for storing and passing on state information to subsequent iterations.  Although 

stateful RNN models outperform their non-stateful counterparts on longer sequences, they are more time-consuming to train and 

can underperform on occasions due to strong correlations between batches. 

 

3.8 Evaluation metrics 

 

The proposed architecture was evaluated using a number of performance indicators.   The results of TP, FP, TN, and FN were 

obtained by comparing the observed values with the expected outcomes from the trained models.    These variables are used to 

construct the following performance metrics: F1-score, recall, accuracy, and precision: 
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Accuracy: The rate at which the trained model made predictions in comparison to the entire dataset (input samples) is measured by 

this statistic.  The formula is (3)- 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+Fp+TN+FN
      (3) 

Precision: Precision measures how well a model predicts positive occurrences relative to all positive occurrences. Precision 

indicates. How good the classifier is in predicting the positive classes is expressed as (4)- 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
      (4) 

Recall: Positive event prediction accuracy is defined here as the proportion of true positives relative to the total number of false 

positives. In mathematical terms, it looks like (4)- 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
       (5) 

F1 score: It is a combination of the harmonic mean of precision and recall, that is, it helps to balance recall and precision. Its range 

is [0, 1]. Mathematically, it is given as (6)-  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (6) 

Receiver Operating Characteristic Curve (ROC): The ROC plots, for a set of decision cut-off points, the ratio of successfully 

categorized cases to those that were wrongly classified.  FPR is equal to 1-specificity, but TPR is often called sensitivity or recall. 

 

4 RESULTS AND DISCUSSION  

 

This section describes the experimental setup, along with the results of the training and testing steps for the proposed model.    

Machines that met the requirements for running the suggested algorithms included desktop PCs with Windows 11 Home 22H2, 16 

GB of RAM, an AMD Ryzen 5-5500U CPU, and a Radeon 2.10 GHz graphics card.   Anaconda Jupyter Notebooks powered by 

Python 3.8 were utilised for the development and execution of the ML models.   Table II shows the training results of the proposed 

model on the NSL-KDD dataset. These results were derived from four important performance metrics: F1-score, recall, accuracy, 

and precision.  Results from testing the suggested RNN model of cyber threat detection on the NSL-KDD database show that the 

model performs well across the board for the most important metrics.  The model's 96% accuracy in evaluating it indicates a high 

level of capability to correctly categorise both known threats and normal traffic.  Since the RNN is so good at avoiding false 

positives—it has a 92% accuracy rate—the threats it detects are incredibly trustworthy.  The model's ability to capture the majority 

of real cyber threats, thereby reducing the likelihood of undetected attacks, is demonstrated by its 93% recall rate.  In addition, the 

proposed RNN model has a robust F1-score of 92%, which means that it can out-perform the state-of-the-art in cybersecurity through 

accurate and trustworthy threat detection, without sacrificing any of the other important aspects of the system, such as recall and 

precision. 

 

Table 2: Experiment Results of Proposed Models for Cyber Threat Detection to Increase Cybersecurity on NSL-KDD dataset 

 

Performance matrix Recurrent Neural Network (RNN) Model 

Accuracy 96 

Precision 92 

Recall 93 

F1-score 92 

 

Figure 5: Accuracy curves for the RNN Model 
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Figure 5 demonstrates the accuracy of the proposed model during testing and training on the datasets of 100 epochs. Initially, the 

accuracy rate rises quickly in the first few of the epochs, increasing by approximately 0.30, and this is evidence of rapid learning in 

the earlier stages of training. Both the accuracy of training and testing the model reaches a plateau after the fourth training pass and 

fluctuates between 0.80 and 0.88; this is an indication that there is no notable overfitting or underfitting of the model. There is also 

tight convergence in the training and testing curve, which is an indication of the fact that the model has generalization ability and 

hence shows good and stable performance in previously unseen data. 

 

 
Figure 6: Loss curves for the RNN Model 

Figure 6 indicates the loss change with each iteration in terms of epochs on the training and testing datasets within 100 epochs. 

Initially, the loss value is rather high, about 0.7, but it drops a lot in the first several epochs indicating that the model begins to learn 

successfully. As the training goes on, the loss reaches lower figures and stabilized at 0.25-0.35 indicating optimal model training. 

The loss curve of both the training and testing shows a similar monotony of growth with periodic peaks perhaps the interventions 

during learning or optimization. The close alignment of the two curves suggests that the model achieves good generalization, as it 

performs consistently on both the training and unseen testing datasets. 

 

 

Figure 7: Receiver Operating Characteristic (ROC) curve for RNN 

 

The suggested model's classification performance is shown in Figure 7, which is a plot of the sensitivity (actual positive rate) against 

the false positive rate (the ROC curve).    Exceptional cross-class discrimination accuracy with low false positive rates is shown by 

the steeply rising curve in the top left corner.    With an AUC of 0.995—very near to 1—the model works nearly perfectly and has 

excellent classification performance.   The approach identifies cyber hazards quite accurately by taking sensitivity and specificity 

into account.  
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4.1 Comparative analysis 

 

In order to confirm that the RNN model is functional, its accuracy is compared to other models that are already in use.  Compared 

here.  The NSL-KDD dataset was used to compare the prediction models' performance in detecting cyber threats (Table III).  The 

most effective model was the ANN, which achieved an accuracy of 78% and a good level of judgement precision (96%). However, 

its lower recall (62.05%) and F1-score (75.57%) suggest that it did not detect all the relevant threats that were expected of it.  The 

SVM achieved a somewhat better accuracy rate of 87.58% while maintaining steady performance in the other three metrics: recall 

(87.31%), precision (86.11%), and F1-score (87.07%).  A 95.8 percent accuracy rate belies the DT model's weak generalizability 

and overfitting, as indicated by its low precision, recall, and F1-score values (around 55-56%).  In comparison to the other models, 

the suggested RNN outperformed them all in terms of accuracy (96%), precision (92%), recall (93%), and F1-score (92%), 

demonstrating its potential to enhance cybersecurity by detecting threats more accurately and in a more balanced manner. 

 

Table 3: Accuracy Comparison of different Predictive models of Cyber Threat Detection for increasing Cybersecurity using the 

NSL-KDD dataset 

 

Models Accuracy Precision Recall F1-score 

ANN[29] 78 96 62.05 75.57 

SVM[30] 87.58 86.91 87.31 87.07 

DT[31] 95.8 56.6 55.8 56.2 

RNN 96 92 93 92 

The main strength of the proposed RNN-based model is its high accuracy of 96%, which outperforms the effectiveness of other 

existing models on the NSL-KDD dataset related to cyber threat detection. This high accuracy indicates the ability of the model to 

correctly perform classification of the normal and malicious activities and thus minimizing mistakes in the identification of threats. 

With such high levels of accuracy, the proposed RNN provide a chance to introduce more trustworthy cybersecurity procedures, 

reducing the likelihood that possible attacks missed and increasing the efficiency of identification systems in general. 

 

5 CONCLUSION AND FUTURE STUDY 

 

 

Advanced persistent attacks, zero-day vulnerabilities, polymorphic malware, and other complex cyber threats are becoming more 

common and difficult for traditional malware detection approaches to identify.  Using the NSL-KDD dataset and Random Forest 

analysis for systematic preprocessing and feature selection, this study demonstrates how to greatly improve the cyber threat 

identification problem. The method eliminates redundancy and trains only the most pertinent features resulting in improvements in 

computational costs and better overall model performance. Experimental results indicated that ANN attained 78%, SVM a high 

87.58%, and DT 95.8%. It was observed that the RNN was able to predict the data most accurately with accuracy of 96%, proving 

that it can learn the temporal patterns of network traffic data efficiently. These findings confirm that optimized feature selection not 

only minimizes processing overhead but also strengthens predictive accuracy, enabling more reliable detection of intrusions. The 

study highlights the importance of implementing sophisticated cybersecurity models to address increasingly complex and intricate 

attack scenarios.  

 

Improving the work's adaptability, scalability, and resilience against modern cyber-attacks could be achieved by testing state-of-

the-art DL architectures on large-scale, real-time datasets. These designs include CNN-RNN hybrids, attention-based models, and 

transformers. 
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