On the square root of a matrix
Main Article Content
Abstract
of certain class of matrices using Cayley-Hamiliton Theorem. Our formula extend and generalize the corresponding approach for 2 x 2 matrix. Also, some examples are given in support of our method
Downloads
Article Details
References
A. Bjorck, S. Hammarling, A Schur method for the Square Root of a Matrix, Linear Algebra
Appl.52/53: 127-140(1983).
Charles R. Johnson, Kazuyoshi Okuba, Robert Reams, Uniqueness of Matrix Square Roots
and an Application, Linear Algebra and its applications 323(2001), pp 51-60.
Donald Sullivan, The Square Roots of 2 2 Matrices, Mathematics Magazine, Vol.66, No.5,
Dec 1993, pp 314-316.
Edvin Deadman, Nicholas J. Higham and Rui Ralha, A Recursive Blocked Schur Algorithm
for Computing the Matrix Square Root, MIMS E print 2012.26, Manchester, UK: Manchester
institute for Mathematical Sciences, University of Manchester, Jan 2012.
URL: http://eprints.ma.man.ac.uk/1775.
G. Strang, Linear Algebra and its Applications, 3rd ed., Harcourt, Brace, Jovanovich, San
Diego, CA, 1988.
Ihab Ahmad Abd AL-Baset AL-Tamimi, The Square Roots of 2 2 Invertible Matrices,
Advances in Algebra (ISSN 0973-6964) Vol. 3, N0.1(2010), pp 15-18.
Nicholas J. Higham, Newtons Method for the Matrix Square Root, Math. of Computation,
(1986), pp 537-549.
Panayiotis J. Psarrokos, On the mth Roots of a Complex Matrix, The Electronic Journal of
Linear Algebra (ISSN 1081-3810) Vol.9, pp 32-41, April 2002.
Yood, B., Rootless Matrices, Mathematics Magazine,75, 2002, 219-223.
Yuttanan, B. and Nilrat, C., Roots of Matrices, Songklanakarin J.Sci. Technol., 2005, 27(3),
-665.