PERIODIC BOUNDARY VALUE PROBLEM OF RANDOM DIFFERENTIAL EQUATION
Main Article Content
Abstract
In this paper, an existence of random solution is proved for a periodic boundary value problem of second order ordinary random differential equation. Using the application of an algebraic random fixed point theorem of Dhage. Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
 Keywords: Random differential equation, periodic boundary value problem, random solution.
 2000MathematicsSubjectClassifications:60H25, 47H40, 47N20. . Â
Downloads
Article Details
References
. T. Bharucha-Reid, On the theory of random equations, Proc.Symp.Appl.16th,(1963),40-69,Ame.Soc., Providence, Rhode Island, (1964).
. B. C. Dhage, Some algebraic and topological random fixed point theorems with applications to nonlinear random integral equations, Tamkang J. Math. 5(2004), 321-345.
. B. C. Dhage, A random version of a Schaefer type fixed point theorem with applications to functional random integral equations, Nonlinear Funct. Anal. Appl 9 (2004), 389-403.
. S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979),261-273
. V. Lakshmikantham and S. Leela, Remarks on first and second order periodic boundary value problem, Nonlinear Anal. 8 (1984), 281-287 .
. J. J. Nieto, Nonlinear second order periodic value problems with Carath’eodory functions, Appl. Anal.34(1989),111–128.
. D. S. Palimkar, Existence theory of random differential equation, Inter. Journ. of Sci. and Res. Pub.,Vol.2, 7,2012,1-6.
. Q. Yao, Positive solutions of nonlinear second-order periodic boundary value problems, Appl. Math. Lett. 20 (2007), 583-590.