CONNECTEDNESS IN FUZZY RECOMBINATION SPACE

Main Article Content

Minakshi Biswas

Abstract

A fuzzy pretopology is naturally generated in the recombination set when the recombination space is studied in fuzzy setting.This fuzzy pretopology can be referred as fuzzy recombination space.We have studied the connectedness property of recombination space from fuzzy point of view.

Downloads

Download data is not yet available.

Article Details

How to Cite
Biswas, M. (2014). CONNECTEDNESS IN FUZZY RECOMBINATION SPACE. Journal of Global Research in Mathematical Archives(JGRMA), 2(3), 95–101. Retrieved from https://jgrma.com/index.php/jgrma/article/view/164
Section
Research Paper
Author Biography

Minakshi Biswas, Dibrugarh University,Dibrugarh

Assistant Professor

Department of Basic Sciences

Assam Don Bosco University

 

References

Ali T., Phukan C. K., Incompatibility of Metric Structure in Recombination Space, International Journal of Computer Applications (0975 – 8887) V-43, N-14(2012) 1-6.

Badard R., Fuzzy pretopological spaces and their representation, Journal of mathematical analysis and applications, 81(1981)378-390.

Dalud-Vincent, Brissaud M., Lamure M., Connectivities and Partitions in a Pretopological Space, International Mathematical Forum, Vol. 6, N- 45(2011) 2201 – 2215.

Dalud-Vincent, Brissaud M., Lamure M., Connectivities for a Pretopology and its inverse, International Journal of Pure and Applied Mathematics, Vol. 86, N- 1(2013) 43 – 54.

Klir G. J., Yuan B., Fuzzy Sets and Fuzzy Logic Theory and Application, Prentice Hall of India Private Limited, 2003.

Mashour A.S, Ramadan A.A, and Monsef M.E.Abd.EL, A note on compactness in L-Fuzzy Pretopological spaces, Rocky Mountain Journal of Mathematics, V-20,N-1(1990)199-208

Palaniappan N., Fuzzy Topology, second ed., Narosa Publishing House , India ,2005.

Stadler B.M.R., Stadler P. F., Generalized topological spaces in evolutionary theory and combinational chemistry, J. Chem. Inf. Comput. Sci., 42(2002)577-585.

Stadler P. F., Wagner G. P., Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism, Complexity, 2(1996)37-43.

Stadler B.M.R., Stadler P. F., Shapk M., Wanger G. P., Recombination spaces, metrics, and pretopologies, Z. Phys. Chem., 216(2002) 217-234.

Ying-Ming Liu, Mao-Kang Luo, Fuzzy Topology, Advances in Fuzzy Systems-Applications and Theory, World Scientific Publishing Co. pte. Ltd., Singapore, Vol.9 (1997).