A FIXED POINT APPROACH TO ORTHOGONAL STABILITY OF AN AQ-FUNCTIONAL EQUATIONS IN MODULAR SPACES
Main Article Content
Abstract
f(x + ay) = f(x) + a^2f(y) −( a2 − a)/2[f(x + y) − f(x − y)]
where a ∈ N − {0, 1}, in modular spaces.
Downloads
Article Details
References
Aczel, A Short Course on Functional Equations, D. Reidel Publisher Co., Dordrecht, 1987.
M. Almahalebi, A ï¬xed point approach to Orthogonal Stability of an additive-quadratic functional equation, Advances in Fixed Point Theory, 3 (2013), No. 3, 464-475.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc., Japan, 2 (1950), 64-66.
S. Czerwik, Functional Equations and Inequalities in Several Variables,World Scientiï¬c, River Edge, NJ, 2002.
F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Institut Mathematique. Publications. Nouvelle S´erie.(Beograd) (N. S), 54 (1986), 63-71.
Iz. El-Fassi and S. Kabbaj, Hyers-Ulam-Rassias Stability of Orthogonal Pexiderized Quadratic Functional Equation, Int. j. of Comp. Appl. (0975-8887), V. 92, no 9 (2014).
IJCATM:www.ijcaonline.org
Iz. El-Fassi and S. Kabbaj, Hyers-Ulam-Rassias Stability of Orthogonal Quadratic Functional Equation in Modular spaces. submitted.
M. Fochi, Functional equations in A-orthogonal vectors, Aequations Math., 38 (1989), 28-40.
R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull Polish Acad Sci Math.43, 143-151 (1995).
S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pac J. Math. 58, 427-436 (1975).
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224.
D. H. Hyers, G. Isac, and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkh¨auser, Basel, 1998. 191-206.
S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
M. A. Khamsi, Quasicontraction Mapping in modular spaces without ∆2-condition, Fixed Point Theory and Applications Volume (2008), Artical ID 916187, 6 pages
S. Koshi, T. Shimogaki, On F-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 no. 3 (1961), 202-218.
M. Krbec, Modular interpolation spaces, Z. Anal. Anwendungen 1 (1982), 25-40.
W. A. Luxemburg, Banach function spaces, Ph. D. thesis, Delft Univrsity of technology, Delft, The Netherlands, 1959.
L. Maligranda, Orlicz Spaces and Interpolation, in: Seminars in Math., Vol. 5, Univ. of Campinas, Brazil, 1989.
S. Mazur and W. Orlicz, On some classes of linear metric spaces, Studia Math., 17 (1958),97-119.
M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J Differ Equat Appl.11, 999-1004 (2005).
M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J Math Anal Appl.318, 211-223 (2006)
M. S. Moslehian and Th.M. Rassias, Orthogonal stability of additive type equations, Aequationes Math.73, 249-259 (2007).
M. Mirzavaziri and M. S. Moslehian, A ï¬xed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 no. 3 (2006), 361-376.
M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations. Appl., 11 no. 11 (2005), 999-1004.
Z. Moszner, On the stability of functional equations, Aequationes Math., 77 (2009), 33-88.
J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. Vol. 1034, Springer-verlag, Berlin, 1983.
H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser., Vol. 1, Maruzen Co., Tokyo, 1950.
W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.
L. Paganoni and J. R¨atz, Conditional function equations and orthogonal additivity, Aequationes Math.50, 135-142 (1995).
A. G. Pinsker, Sur une fonctionnelle dans l’espace de Hilbert, In: Dokl CR (ed.) Acad Sci URSS n Ser.20, 411-414 (1938).
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
J. Ratz, On orthogonally additive mappings, Aequations Math., 28 (1985), 35-49.
J. Ratz and Gy. Szab´o, On orthogonally additive mappings IV, Aequations Math.38, 73-85 (1989).
R. Saadati, S. M. Vaezpour, and Y. J. Cho, A note on the on the stability of cubic mappings and quadratic mappings in random normed spaces, Journal of Inequalities and Applications,
(2009), Article ID 214530, 6 pages, DOI 10.1155/2009/214530.
Gh. Sadeghi, A ï¬xed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc. (to appear).
K. Sundaresan, Orthogonality and nonlinear functional on Banach space, Proc Amer Math Soc.34, 187-190 (1972).
Gy. Szabo, sesquilinear-orthogonally quadratic mappings, Aequations Math., 40 (1990), 190-200.
Ph. Turpin, Fubini inequalities and bounded multiplier property in gen- eralized modular spaces, Comment. Math., Tomus specialis in honorem Ladislai Orlicz I (1978), 331-353.
S. M. Ulam, Problems in Modern Mathematics, Chapter IV, Science Edi- tions, Wiley, New York, 1960.
F. Vajzovi´c, ¨ Uber das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x+y)+H(x−y) =2H(x) + 2H(y), Glasnik Math. Ser. III, 2 (1967), 73-81.
S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90 (1959),291-311.
S. S. Zhang, R. Saadati and Gh. Sadeghi, Solution and stability of mixed type functional equation in non-Archimedean random normed spaces, Appl. Math. Mech. Engl. Ed., 35(2)
(2011), 663-676.