FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS WITH PPF DEPENDENCE IN BANACH SPACES
Main Article Content
Abstract
The aim of this paper is to prove fixed point theorem with PPF dependence for mappings involving - rational type contraction in Razumikhin class. Â
Keywords: PPF dependent fixed point, rational type contraction, Razumikhin class.
Mathematics Subject Classification: 47H10; 54H25.
Downloads
Article Details
References
V. Berinde, “Approximating fixed points of weak contractions using the Picard iteration,†Nonlinear Analysis Forum, vol. 9(1)(2004), pp. 43–53.
S. R. Bernfeld, V. Lakshmikantham, and Y. M. Reddy, “Fixed point theorems of operators with PPF dependence in Banach spaces,†Applicable Analysis, vol. 6(4)(1997), pp. 271–280.
S. K. Chatterjea, “Fixed-point theorems,†Comptes Rendus de l’Acad´emie Bulgare des Sciences, vol. 25(1972), pp. 727–730.
L. B. ´ Ciri´c, “A generalization of Banach’s contraction principle,†Proceedings of the American Mathematical Society, vol. 45(1974), pp. 267–273.
B. K. Dass and S. Gupta, “An extension of Banach contraction principle through rational expression,†Indian Journal of Pure and Applied Mathematics, vol. 6(12)(1975), pp. 1455–1458.
B.C.Dhage, “On some common fixed point theoremswith PPF dependence in Banach spaces,†Journal of Nonlinear Science and Its Applications, vol. 5(3)(2012), pp. 220–232.
Z. Drici, F. A. McRae, and J. Vasundhara Devi, “Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence,†Nonlinear Analysis: Theory, Methods &
Applications A, vol. 67(2)(2007), , pp. 641–647.
M. A. Geraghty, “On contractive mappings†Proceedings of the American Mathematical Society, vol. 40(1973), pp. 604–608.
D. S. Jaggi, “Some unique fixed point theorems,†Indian Journal of Pure and AppliedMathematics, vol. 8(2)(1977), pp. 223–230.
M. Jleli, V.C.Rajie, B.Samet and C.Vetro, â€Fixed point theorems on ordered metric spaces and application to nonlinear elastic beam equations †J. Fixed Point Theory and applications, vol.12(1-2)(2012), 175-192.
R. Kannan, “Some results on fixed points—II,†The American Mathematical Monthly, vol. 76(1969), pp. 405–408.
M.A. Kutbi and W. Sintunavarat “On sufficient conditions for the existence of past-present-future dependent fixed point in the Razumikhin class and application†Abstract and Applied Analysis,vol.2014,Article ID342687,8 pages.
A. Meir and E. Keeler, “A theorem on contraction mappings,†Journal of Mathematical Analysis and Applications, vol. 28(1969), pp. 326–329.
W. Sintunavarat and P. Kumam, “PPF dependent fixed point theorems for rational type contraction mappings in Banach spaces,†Journal of Nonlinear Analysis and Optimization, vol. 4(2)(2013), pp. 157–162.
T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,†Proceedings of the American Mathematical Society, vol.136(5)(2008), pp.1861–1869.
P. N. Dhutta and B. S. Choudhury, “A generalization of contraction principle in metric spaces,†Fixed Point Theory and Applications, vol. 2008, Article ID 406368, 2008.
M. A. Kutbi and W. Sintunavarat, “On sufficient conditions for the existence of Past-Present-Future dependent fixed point in the Razumikhin class and applicationâ€, Abstract & Applied Analysis, Vol. 2014(2014), Article ID 342687, 8 pages, http://dx.doi.org/10.1155/2014/342687.