SANDWICH THEOREMS FOR ANALYTIC FUNCTIONS DEFINED BY CERTAIN NEW OPERATORS
Main Article Content
Abstract
Abstract: In this paper we obtain some subordination and superordination results involving certain new generalized operators for certain subclasses of analytic functions in the open unit disk. Our results improve previously known results.
Downloads
Article Details
References
REFERENCES
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci, 15(1) (2004), 87-94.
M. K. Aouf, A. Shamandy, R. M. El-Ashwah and E. E. Ali, On sandwich theorems for some subclasses of analytic functions involving extended multiplier transformations, Math. Bech., 63 (3) (2011),157-169.
S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20 (1) (1994), 1-9.
T. Bulboaca, Classes of first order differential superordinations, Demonstr. Math. , 35 (2) (2002), 287-292.
T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Adriana Catas, Proceedings book of the international symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey,241-250.
N. E. Cho and H. M. Srivastava , Argument estimates of certain analytic functions defined by
a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39-49.
N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
L. Cotirla, A differential sandwich theorem for analytic functions defined by the integral operator, Stud. Univ. Babes-Bollya Math., 54(2) (2009), 13-21.
T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38(1972), 746-765.
T. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one parameter families of integral operator, J. Math. Anal. Appl., 176(1993), 138-147.
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics (N.225), Marcel Dekker, New York and Basel, 2000.
S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Compl. Var., 48(10) (2003), 815-826.
J. Patel, Inclusion relations and convolution properties of certain classes of analytic functions defined by a generalized Salagean operator, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 33-47.
D. Raducanu and V. O. Nechita, A differential sandwich theorem for analytic functions defined by the generalized Salagean operator, The Australian J. Math. Anal. Appl. , 9 (1) (2012), Article 8,pp. 1-7.
G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer –Verlag, Berlin, 1013(1983), 362-372.
S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7 (36) (2012), 1751-1760.
B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, World Sci. Publishing, River Edge, N. Y., (1992), 371-374