PERIODIC SOLUTIONS FOR A DIFFERENTIAL EQUATION OF A RENEWABLE RESOURCE SUBJECT TO ADDITIVE ALLEE EFFECTS
Main Article Content
Abstract
Downloads
Article Details
References
P. Aguirre, E. G. Olivares and E. Saez, Two limit cycles in a Leslie-
Gower predator-prey model with additive Allee eect, Nonlinear Anal-
ysis: Real World Applications 10(2009)1401 - 1416.
P. Aguirre, E.G. Olivares and E. Saez, Three limit cycles in a Leslie-
Gower predator- prey model with additive Allee eect. Siam J. Appl.
Math., 69(5)(2009)12441262.
W.C. Allee, Animal aggregations, University of Chicago Press, Chicage, IL, 1931.
W.C. Allee, Cooperation among animals, Henry Schuman, New York,
L. Berec, E. Angulo and F. Counchamp, Multiple Allee eects and pop-
ulation management. TREE 22(4)(2006) 185-191.
D. S. Boukal and L. Berec, Single-species models of the Allee ef-
fect:extinction boundaries, sex ratios and mate encounters. J. theor.Biol.
(2002) 375-394. environment, Math. Biosc. 205(2007) 1-18.
C. W. Clark, Mathematical Bioeconomic: The optimal management of
renewable resources, (second edition). John Wiley and Sons, 1990.
F. Courchamp, T. C. Brock and B. Grenfell, Inverse dependence and
the Alle eect, TREE 14(10)(1999) 405-410.
F. Courchamp, L. Berec and J. Gascoigne, Allee Eects in Ecology and
Conservation, Oxford University Press, Oxford, 2008.
B. Dennis and G. P. Patil, The gamma distribution and weighted multi-model gamma distributions as models of population abundance. Math.Biosci. 68(1984) 187-212.
B. Dennis, Allee eects: population growth, critical density, and the
chance of extinction, Natural Resource Modeling 3(4)(1989) 481-538.