On W2-curvature tensor of a generalized complex space forms

Main Article Content

M. C. Bharathi

Abstract

In the present paper we study certain curvature conditions on
W2-curvature tensor. We study W2-semisymmetric, W2-flat generalized complex space forms. Also W2 · S = 0 and W2 · R = 0 on generalized complex space forms are studied.


Key words:- Generalized complex space forms, W2-semisymmetric, W2-flat.


AMS Subject Classification (2010): 53C15, 53C20, 53C21, 53C25, 53D10,
53C55;

Downloads

Download data is not yet available.

Article Details

How to Cite
Bharathi, M. C. (2015). On W2-curvature tensor of a generalized complex space forms. Journal of Global Research in Mathematical Archives(JGRMA), 2(5), 74–79. Retrieved from https://jgrma.com/index.php/jgrma/article/view/217
Section
Research Paper

References

P. Alegre, D.E Blair and A. Carriazo, Generalized Sasakian -space forms. Isrel.J.Math., 141, (2004),PP.151-183.

D.E. Blair, Contact main a Riemannian geometry, Lecture notes in Math. 509 Springer verlag, Verlin,(1976).

U.C. De and Avijit Sarkar, On the projective curvature tensor of generalized -Sasakian-space forms,Questiones Mathematicae, 33, (2010), PP.245-252.

U.C. De and G.C. Ghosh, On generalized Quasi-Einstein manifolds, Kyungpoole Math.J., 44, (2004),

PP.607-615.

U. K. Kim, conformally flat generalized Saskian-space form and locally symmetric generalized Sasakian space forms, Notedi Mathematica, 26, (2006), PP.55-67.

Mehmet atceken, On generalized Saskian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Mathemaical analysis and applications, volume 6, Issue 1, (2014), PP.1-8.

Olszak. Z, On The existance of generlized complex space form, Isrel.J.Math. 65, (1989), PP.214-218.

R.N Singh and Shravan K. Pandey, On generalized Sasakian space form, The mathematics student, vol 81, Nos. 1-4, (2012), PP.205-213.

L. Tamsassy, U.C De and T.Q.Bink, On weak symmetries of Kaehler manifolds, Balkan.J.Geom.Appl.,5, (2000), PP.149-155.

Venkatesh and B.Sumangala, On M-Projective curvature tensor of a generalized Sasakian space form ,

acta Math, Univ,comenianae vol.LXXXII, 2(2013), PP.209-217.