ON THE HYPER-WIENER INDEX OF THORNY-COMPLETE GRAPH
Main Article Content
Abstract
Abstract: Let G be the graph. The Wiener Index W(G) is the sum of all distances between vertices of G, where as the Hyper-Wiener index WW(G) is defined as WW(G) = W(G) + Â In this paper we prove some general results on Hyper-Wiener Index of Thorny-Complete graphs.
Mathematics Subject Classification: 05C12.
Keywords: Thorny-complete graph, Wiener index and hyper-Wiener index.
Downloads
Article Details
References
G. C. Cash, Polynomial expressions for the hyper-Wiener index of extended hydrocarbon networks, Comput. Chem. 25 (2001) 577-582.
G. C. Cash, Relationship between the Hosaya Polynomial and the hyper-Wiener index, Appl. Math. Lett. 15 (2002) 893-895.
H. B. Walikar, H. S. Ramane, V. S. Shigehalli, Wiener number of Dendrimers, In: Proc. National Conf. on Mathematical and Computational Models, (Eds. R. Nadarajan and G. Arulmozhi), Applied Publishers, New Delhi, 2003, 361-368.
H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH comm. Math. Comp. Chem., 50 (2004), 117-132.
H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17-20.
I. Gutman, property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.
I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356.
J. Baskar Babujee and J. Senbagamalar, Wiener index of graphs using degree sequence, Applied Mathematical Sciences, Vol. 6, 2012, no: 88, 4387-4395.
Randic, M., Novel molecular description for structure-property studies, Chem. Phys. Lett., 211 (1993), 478-483.
Shigehalli V. S. and Shanmukh kuchabal, hyper-wiener index of multi-thorn even cyclic graphs using cut-method, J. comp. and Math. Sci. Vol. 5(3), 304-308 (2014).
Shigehalli V. S., D. N. Misale and shanmukh kuchabal, On the hyper-Wiener index of graph amalgamation, J. comp. and Math. Sci. Vol. 5(4), 352-356 (2014).