ON THE HYPER-WIENER INDEX OF THORNY-COMPLETE GRAPH

Main Article Content

Shigehalli V. S.

Abstract

Abstract: Let G be the graph. The Wiener Index W(G) is the sum of all distances between vertices of G, where as the Hyper-Wiener index WW(G) is defined as WW(G) = W(G) +  In this paper we prove some general results on Hyper-Wiener Index of Thorny-Complete graphs.

Mathematics Subject Classification: 05C12.

Keywords: Thorny-complete graph, Wiener index and hyper-Wiener index.

Downloads

Download data is not yet available.

Article Details

How to Cite
V. S., S. (2015). ON THE HYPER-WIENER INDEX OF THORNY-COMPLETE GRAPH. Journal of Global Research in Mathematical Archives(JGRMA), 2(6), 55–61. Retrieved from https://jgrma.com/index.php/jgrma/article/view/235
Section
Research Paper

References

G. C. Cash, Polynomial expressions for the hyper-Wiener index of extended hydrocarbon networks, Comput. Chem. 25 (2001) 577-582.

G. C. Cash, Relationship between the Hosaya Polynomial and the hyper-Wiener index, Appl. Math. Lett. 15 (2002) 893-895.

H. B. Walikar, H. S. Ramane, V. S. Shigehalli, Wiener number of Dendrimers, In: Proc. National Conf. on Mathematical and Computational Models, (Eds. R. Nadarajan and G. Arulmozhi), Applied Publishers, New Delhi, 2003, 361-368.

H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH comm. Math. Comp. Chem., 50 (2004), 117-132.

H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17-20.

I. Gutman, property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.

I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356.

J. Baskar Babujee and J. Senbagamalar, Wiener index of graphs using degree sequence, Applied Mathematical Sciences, Vol. 6, 2012, no: 88, 4387-4395.

Randic, M., Novel molecular description for structure-property studies, Chem. Phys. Lett., 211 (1993), 478-483.

Shigehalli V. S. and Shanmukh kuchabal, hyper-wiener index of multi-thorn even cyclic graphs using cut-method, J. comp. and Math. Sci. Vol. 5(3), 304-308 (2014).

Shigehalli V. S., D. N. Misale and shanmukh kuchabal, On the hyper-Wiener index of graph amalgamation, J. comp. and Math. Sci. Vol. 5(4), 352-356 (2014).