SCHULTZ POLYNOMIALS AND THEIR TOPOLOGICAL INDICES OF SUSPENSION GRAPHS
Main Article Content
Abstract
Let G = (V, E) be a simple connected graph. The degree of a
vertex u and the distance between the vertices u and v are denoted
by du and d(u; v) of a graph G respectively. The Schultz and modied
Schultz polynomials are Sc(G, x) = ∑ (u,v) ε V(G)(du + dv) Xd(u, v) and
Sc*(G, x) =∑ (u,v) ε V(G)(du dv) Xd(u, v) respectively. Then their first
derivative at x = 1 are equal to Sc(G) = ∑ (u,v) ε V(G)(du + dv) d(u, v)
and Sc*(G) = ∑ (u,v) ε V(G)(du dv) d(u, v) are known as Schultz index
and modified Schultz index respectively. In this paper, we compute
the Schultz and modified Schultz polynomials and their indices for the
suspension graphs K1+Kn Ɐ n ε N, K1+Kn, n Ɐ n ε N, K1+Kn, m  Ɐ n, m ε N, n ≠mÂ
Downloads
Article Details
References
A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees;Theory
and applications, Acta. Appl. Math., 66, (2001), 211-249.
M. Eliasi and B. Taeri, Shultz polynomials of composite graphs, Appli-
cable Analysis and Discrete Mathematics, 2, (2008), 285-296.
M. R. Farahani, Shultz, Modied schultz polynomial, Hosoya polyno-
mial and wiener index of circumcoronene series of Bezenoid, Applied
mathematics and information sciences, 31(5-6), (2013), 595-608.
M. R. Farahani, Schultz indices and schultz polynomials of Harary
graph, Pacific Journal of Applied Mathematics, 6(3), (2014), 77-84.
M. R. Farhani, W. Gao and M. R. Rajesh Kanna, The schultz, modified
schultz indices and their polynomials of the jahangir graphs Jn;m for
integer numbers n=3, m > 3, Asian journal of applied sciences, 3(6),
(2015), 823-827.
M. R. Farahani and Hosoya, Schultz, Modified schultz polynomials and
their topological indices of benzene molecules: First members of poly-
cyclic Aromatic hydrocarbons[PAHs], International journal of theoroti-
cal chemistry, 1(2), (2013), 9-16.
I. Gutman, Some Relations between Distance-based polynomials of
trees, Sciences Mathematiques, 30, (2005), 1-7.
I. Gutman, S. Klavzar, Wiener number of vertex-weighted graphs and a chemical application, Disc. Appl. Math., 80, (1997), 73-81.
I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer, Berlin, 1986.
F. Hassani, A. Iranmanesh, S. Mirzaie, Schultz and modified schultz
polynomials of C100 fullerence, MATCH Commun. Math. Comput.
Chem., 69, (2013), 87-92.
H. Hosoya, On some counting polynomials in chemistry, Discrete Applied Mathematics, 19, (1988), 239-257.
H. P. Schultz, Topological organic chemistry 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci., 29, (1989), 227-228.
H. Wiener, Structural determination of paran boiling points, J. Amer. Chem. Soc., 69, (1947), 17-20.
Z. Yarahmadi, T. Doslic and A. R. Ashra, The bipartite edge frustra
tion of composite graphs, Disc. Appl. Math., 158, (2010), 1551-1558.