Computer-Assisted Solution of The DBF Equation Using the HCM for Flow through a Rectangular Porous Channel Bounded by Differentially Heated Horizontal Plate’s Demonstration Using Mayavi

Main Article Content

Dr. Ashoka S. B.

Abstract

The system of non-linear algebraic equations arising from the application of the central difference approximation to the fully developed Darcy-Brinkman-Forchheimer flow equation is solved using the continuation method based on the Runge-Kutta45 order method. The fully-developed non-linear flow through a rectangular channel is considered and the influence of the Brinkman, Reynolds and Darcy numbers, the step size and variable viscosity parameter on the numerical results is investigated.

Keywords: Brinkman,  Reynolds , Darcy , Forchheimer, Runge-Kutta45,  Mayavi

Downloads

Download data is not yet available.

Article Details

How to Cite
S. B., D. A. (2017). Computer-Assisted Solution of The DBF Equation Using the HCM for Flow through a Rectangular Porous Channel Bounded by Differentially Heated Horizontal Plate’s Demonstration Using Mayavi. Journal of Global Research in Mathematical Archives(JGRMA), 4(10), 67–75. Retrieved from https://jgrma.com/index.php/jgrma/article/view/351
Section
Research Paper

References

D. A. Nield and A. Bejan, Convection in porous media, Springer Verlag, New York, 2006.

K. Vafai, Hand book of porous media, CRC Press, 2005.

N. Rudraiah, P. G. Siddheshwar, D. Pal, and D. Vortmeyer, Non – Darcy effects on transient dispersion in

Porous media, ASME Proc. 1988, Nat. Heat Trans. Conf.,Houston,Texas, USA (Ed. H. R. Jacobs), HTD – 96 (1) (1988) 623 - 629.

E. Skjetne and J. L. Auriault, New insights on steady, non-linear flow in porous media, Eur. J. Mech.

B/Fluids, 18 (1999) 131-145.

V. V. Calmidi and R. L. Mahajan, Forced convection in high porosity metal foams, ASMEJ. Heat Trans., 122 (3) (2000) 557-565.

A. R. A Khaled and K. Vafai., The role of porous media in modelling flow and heatransfer in biological tissues, Int. J. Heat Mass Trans., 46 (2003) 4989-5003.

K. Vafai and S. J. Kim, Forced convection in a channel filled with a porous medium: An exact solution, ASME J. Heat Trans., 111 (1989) 1103-1106.

D. A. Nield, S. L. M. Junqueira and J. L. Lage, Forced convection in a fluid-saturated porous-medium channel With isothermal or isoflux boundaries, J. Fluid Mech 322(1996) 201-214.

P. H. Forcheimer, Wasserbewegug durch Buden, Z. Ver. Deutsch. Ing 45 (1901) 1782-1788.

S. Ergun, Flow through packed columns, Chem. Eng. Prog., 48[2] (1952) 89-94.

G. Lauriat and V. Prasad, Natural convection in a vertical porous cavity: A numerical study for Brinkma extended Darcy formulation, J. Heat Trans., 109 (1987) 295-330.

R. C. Givler and S. A. Altobelli, A determination of the effective viscosity for the Brinkman – Forchheimer flow model, J. Fluid Mech., 258 (1994) 355 -370.

D. Poulikakos and K. Renken , Forced convection in a channel filled with porous medium, including the effect of flow inertia, variable porosity and Brinkman friction, ASME J. Heat Trans. 109 (1987) 880-888.

M. Parang and M. Keyhamy, Boundary and inertia effect on flow and heat transfer in porous media, Int. J.Heat Mass Trans., 24 (1987) 195-203.

K. Hooman, A perturbation solution for forced convection in a porous saturated duct, J. Comput. Appl. Math.211(1) (2008) 57-66.

K. Hooman and H. Gurgenci, A theoretical analysis of forced convection in a porous saturated circular tube: Brinkman-Forchheimer model, Transport Porous Media, 69(3) (2007) 289-300.

R. L. Burden and J. D. Faires, 7th Edition, Numerical Analysis, Thomsons, U. K.(2001).