RICCI SOLITONS IN KENMOTSU MANIFOLDS

Main Article Content

Showkat Ahmad Rather

Abstract

The Ricci Soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold. In this paper we will find that the condition for Ricci Soliton in Kenmotsu manifolds to be Shrinking, Steady and Expanding.

Keywords: Bocnher Curvature tensor, Ricci tensor, Curvature tensor.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rather, S. A. (2018). RICCI SOLITONS IN KENMOTSU MANIFOLDS. Journal of Global Research in Mathematical Archives(JGRMA), 5(2), 36–40. Retrieved from https://jgrma.com/index.php/jgrma/article/view/407
Section
Research Paper

References

S.Bochner, Curvature and Betti numbers II, Annals, of Mathematics, 50(2), 77-93, 2012

D.E. Blair, On the geometric meaning of the Bochner tensor, Geom., Dedicata, 4(1), 33-

,1975

B.Chow,P.Lu and L.Ni, Hamilton’s Ricci flow, vol. 77 of Graduate studies in Mathematics,

American Mathematical society,Providence, RI , USA , 2006.

C.S.Bagewadi and G.Ingalahalli,(2012): Ricci Solitons in Lorentzian α- Sasakian manifolds,

Acta Mathematica Academiae Paedagogicae Nyiregyha Ziensis, 28(1), 59-68.

C. Bejam, Livia and Crasmareanu Mircea , Ricci solitons in manifolds with Quasi- constant

curvature, Publ. Math Debrecen, 78(1), 235-243,2011.

B. Chow and D.Knopf (2004): The Ricci flow an introduction, Math. Surv. Monogr. , 110.

J.T.Cho , Almost contact 3- manifolds and Ricci Solitons, Inst, J. Geom. Methods Mod.

Phys, 10(1),2013

K. Kenmotsu, “A class of almost contact Riemannian Manifolds,â€The Tohoku Mathematical

Journal, vol. 24, pp. 93-103, 1972.

C. Calim and M. Crasmareanu , From the Eisenhart problem to Ricci Solitons in f- Kenmotsu

manifolds, Mathematical Science Society 33(3), 361- 368,2009.

D. Dileo and A.M.Pastore, Almost Kenmotsu manifold and nullity distributions, J. Geom.,

, 46 – 61, 2009

U.C. De, M. Turan ,A. Yildiz and A.De Ricci solitons and gradient Ricci solitons on three-

dimensional normal almost contact metric manifolds, Publ. Math. Debrecen, 80, 127 -142,2012