c-CLASS FUNCTION ON NEW CONTRACTIVE CONDITIONS OF INTEGRAL TYPE ON COMPLETE s-METRIC SPACES

Main Article Content

Arslan Hojat Ansari

Abstract

In this paper, we generalised the concept of a new contractive conditions of integral type on complete -metric spaces via -class function.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ansari, A. H. (2018). c-CLASS FUNCTION ON NEW CONTRACTIVE CONDITIONS OF INTEGRAL TYPE ON COMPLETE s-METRIC SPACES. Journal of Global Research in Mathematical Archives(JGRMA), 5(2), 46–73. Retrieved from https://jgrma.com/index.php/jgrma/article/view/409
Section
Research Paper

References

A. H.Ansari, Note on†- -contractive type mappings and related fixed point†,The 2nd Regional Conference on Mathematics And Applications, PNU, September (2014), 377-380.

M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1) (1984), 1-9.

Animesh Gupta, Cyclic contraction on -metric space, International journal of Analysis and Applications, 3(2)(2013), 119-130.

Nihal Yilmaz Ozgur, Nihal Tas, New contractive conditions of integral type on complete -metric spaces, Math Sci,DOI10.1007/s40096-017-0226-0.

Sedghi. S., Shobe. N., Aliouche. A, A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 64(3)(2012), 258-266 .

Rahman M.U., Sarwar M., Fixed point results of Altman integral type mappings in S-metric spaces. Int. J. Anal. Appl. 10(1) (2016), 58-63

Ozgur N.Y., Tas N., Some fixed point theorems on S-metric spaces. Mat. Vesnik 69(1)(2017), 39-52.

B.E. Rhoades and M. Abbas, Maps satisfying generalized contractive conditions of integral type for which , Int. Jour. of Pure and Applied Math. 45 2 (2008) 225–231.

R. Chugh, T. Kadian, A. Rani and B. E. Rhoades, Property P in -Metric Spaces, Fixed Point Theory and Applications, vol. 2010, Article ID 401684, 12 pages, 2010. doi:10.1155/2010/401684

G.S. Jeong and B.E. Rhoades, More maps for which , Demostratio Math., 40 (2007) 671–680.

G.S. Jeong and B.E. Rhoades, Maps for which , Fixed Point Theory and Appl., 6 (2005) 87–131.

M. S. Khan, M. Swalech and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral Math. Soc., 30 (1984) 1–9.

Farshid Khojasteh, Zahra Goodarzi, and Abdolrahman Razani, Some Fixed Point Theorems of Integral Type Contraction in Metric Spaces,Fixed Point Theory and Applications, 13, 2010, doi:10.1155/2010/189684

Krishnakumar .R and Dhamodharan .D, Cone -metric space and fixed point theorems on contractive mapping, Annals of Pure and Applied Mathematics, 14(2) (2017), 237-243

Arslan Hojat Ansari, Krishnakumar .R and Dhamodharan .D, Cone C-class function on new contractive conditions of integral type on Cone -metric space, IJMAA, 5(5-c),(2017),261-275.

A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29(9), 2002, 531–536.

Sh. Rezapour and R. Hamlbarani, Some notes on the paper ’metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), 719-724.