Some results on the stability of bi-exponential functional equations over b-metric spaces

Main Article Content

Nehjamang Haokip

Abstract

In this paper, we introduce a bi-exponential function defined on an algebra over the complex field $\mathbb{C}$ which is also a b-metric space. Different results on stability and superstabiltiy of such functional equation are also discussed here with suitable examples.

Downloads

Download data is not yet available.

Article Details

How to Cite
Haokip, N. (2018). Some results on the stability of bi-exponential functional equations over b-metric spaces. Journal of Global Research in Mathematical Archives(JGRMA), 5(3), 106–112. Retrieved from https://jgrma.com/index.php/jgrma/article/view/417
Section
Research Paper

References

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941),222 - 224.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Vol. 2, Nos. 1 - 2, Sept., 1950, 64 - 66.

T M Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. Vol. 72, No. 2, November 1978, pp. 297-300.

J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation $f(x+y)=f(x)f(y)$, Proc. Amer. Math. Soc. 74(1979), 242-246.

J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80(1980), 411-416.

S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostra. 1993, 1, 5 - 11.

M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metric, studia, univ Babes, Bolya: Math, Liv(3) (2009), 1 - 14.

A. Zivari-Kazempour, Z. Fallah, On the stability of almost bi-multiplicative functionals, Int. J. Pure and Applied Math., Vol. 113, No. 5 (2017), 575-581. doi: 10.12732/ijpam.v113i5.5

J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(psi ,varphi)_s$-contractive mappings in ordered b-metric spaces,

Fixed Point Theory and Applications, 2013, (2013):159, doi:10.1186/1687-1812-2013-159.