Some results on the stability of bi-exponential functional equations over b-metric spaces
Main Article Content
Abstract
Downloads
Article Details
References
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941),222 - 224.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Vol. 2, Nos. 1 - 2, Sept., 1950, 64 - 66.
T M Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. Vol. 72, No. 2, November 1978, pp. 297-300.
J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation $f(x+y)=f(x)f(y)$, Proc. Amer. Math. Soc. 74(1979), 242-246.
J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80(1980), 411-416.
S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostra. 1993, 1, 5 - 11.
M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metric, studia, univ Babes, Bolya: Math, Liv(3) (2009), 1 - 14.
A. Zivari-Kazempour, Z. Fallah, On the stability of almost bi-multiplicative functionals, Int. J. Pure and Applied Math., Vol. 113, No. 5 (2017), 575-581. doi: 10.12732/ijpam.v113i5.5
J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(psi ,varphi)_s$-contractive mappings in ordered b-metric spaces,
Fixed Point Theory and Applications, 2013, (2013):159, doi:10.1186/1687-1812-2013-159.