MATHEMATICAL MODELLING IN BRUSSELATOR CHEMICAL DYNAMICS SYSTEM USING HOMOTOPY ANALYSIS METHOD

Main Article Content

A. Jayalakshmi

Abstract

The Brusselator equations, originally studied as a model for chemical dynamics, exhibit a wide range of behavior. In this paper, a powerful analytical method, called Homotopy analysis method (HAM) is used to solve the system of nonlinear differential equations. Furthermore, in this work the numerical simulation of the problem is also reported using Scilab/Matlab program. Our analytical results are compared with simulation results. A good agreement between analytical and numerical results is noted.

Keywords: Chemical dynamics; Mathematical modeling; Brusselator equation; Non-linear reaction- diffusion equation; Homotopy analysis method.

Downloads

Download data is not yet available.

Article Details

How to Cite
Jayalakshmi, A. (2013). MATHEMATICAL MODELLING IN BRUSSELATOR CHEMICAL DYNAMICS SYSTEM USING HOMOTOPY ANALYSIS METHOD. Journal of Global Research in Mathematical Archives(JGRMA), 1(5), 31–43. Retrieved from https://jgrma.com/index.php/jgrma/article/view/64
Section
Research Paper

References

Hunseok Kang and Yakov Pesin, Dynamics of a discrete brusselatormodel: Escap to infinity and julia set, (1991).

J.J. Tyson, The Belousov-Zhabotinskii reaction, Lecture notes in biomathematics 10, Springer-Verlag, Heidelbeg, (1976).

Shaun Ault, Erik Holmgreen, Dynamics of the brusselator, march 16, (2003).

I.Prigogine, R. Lefever, Summary-breaking instabilities in dissipative systems, J. Chem. Phys. 48 (4) (1968) 1695-1700.

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237 (641) (1952) 37-72.

K.J.Brown, F.A. Davidson, Global bifurcation in the brusselator system, Non-linear Anal.-Theor. Meth. App. 24 (12) (1995) 1713-1725.

T. Erneux, E. Reiss, brusselator isolas, SIAM J. Appl. Math. 43 (1983) 1240-1246.

T. Kolokolinkov, T. Erneuxa, J. weib. Mesa-type patterns in the one-dimensional brusselator and theis stability, Physica D. 214 (1) (2006) 63-77.

G.Meinhardt, Models of biological pattern formation, London academic press, (1982).

Strogatz, H.Steven, Non-linear dynamics and chaos, West view press, (1994).

Janpou Nee, A note for the solution of the brusselator equation, General education center, ChienKuo technology university, Changhua, 500, R.O.C.

D. L. Ropp et al. Studies of the accuracy of time integration methods for reaction-diffusion equations, J. Comput. Phys. 194 (2004) 544-574.

S. J. Liao, The proposed Homotopy analysis technique for the solution of nonlinear Problems, (1992).

S. J. Liao, Beyond perturbation: Introduction to the Homotopy analysis method. Boca Ranton, Chapman and Hall/CRC press, 2003.

S.J. Liao, Int. J. Nonlinear. Mech., 32 (1997) 815 - 822.

S.J. Liao, Int. J. Nonlinear. Mech., 34(4) (1999) 759 - 778.

S.J. Liao, J. Fluid Mech., 385 (1999) 101 - 128.

S.J. Liao, Appl. Math. Comput., 147 (2004) 499 - 513.

S.J. Liao, Y. Tan, Stud. Appl. Math., 119 (2007) 297 - 355.

S.J. Liao, Beyond perturbation: a review on the basic ideas of the Homotophy analysis method and its applications. Adv. Mech., 38(1) (2008) 1 - 34.

S.J. Liao, Homotopy analysis method in nonlinear differential equations, Springer and Higher Education Press, Heidelberg & Beijing, (2012).

K. Indira, L. Rajendran, ISRN Physical Chemistry, 2013, (2013), 1- 12.

G. Domairry,M. Fazeli, Commun. Nonlinear Sci. Numer. Simul., 14 (2009) 489-499.