ANALYTICAL SOLUTION OF LORENZ EQUATION USING HOMOTOPY ANALYSIS METHOD
Main Article Content
Abstract
In this study, a dynamical system of Lorenz equation is discussed. The main aim of this paper is to describe the nonlinear dynamics for the better understanding in biomedical field. Approximate analytical solution of Lorenz equation is obtained by using the Homotopy analysis method (HAM). Furthermore, in this work the numerical simulation of the problem is also reported using Scilab/Matlab program. An agreement between analytical and numerical results is noted.
Â
Keywords: Lorenz equation, Homotopy analysis method, Mathematical modeling, Non-linear equation.
Downloads
Article Details
References
Gleick, J. Chaos: Making a New Science. Penguin Books, New York, NY, 1987.
S.H. Strogatz. Nonlinear Dynamics and Chaos. Westview, 1994.
STEWART, I. Does God Play Dice? The Mathematics of Chaos. Blackwell, Cambridge, MA, 1989.
Peitgen, H. O., H. Jürgens, D. Saupe, & C. Zahlten. Fractals: An Animated Discussion. Videocassette. New York: Freeman, 1990.
Bradley, Larry. Chaos and Fractals. 2010. Web <http://www.stsci.edu/~lbradley/seminar/ attractors.html>
Viswanath, Divakar. The Fractal Property of the Lorenz Attractor. Physica D: Nonlinear Phenomena, Volume 190, Issues 1_2, March 2004.
Wlodzimierz Klonowski, From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine, Nonlinear Biomedical Physics 2007, 1:5 doi:10.1186/1753-4631-1-5
Liao, S.J.; Ph. D., thesis, Shanghai Jiao Tong University, 1992.
G. Domairry.; M. Fazeli, Comm. Nonlinear Sci.Numer.Sim.2009,14,489- 499.
Liao, S.J.; Tan, Y., A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics, 2007, 119, 297-354.
Liao, S. J., Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2003-2016.
Sohouli, A. R.; Famouri, M.; Kimiaeifar, A.; Domairry, G., Comm. Nonlinear. Sci. Numer.Simulat. 2010, 15, 1691-1699.
Mastroberardino, A.,Comm. Nonlinear Sci. Numer. Simulat. 2011, 16(7), 2730- 2736
S.J. Liao, An optimal Homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 2003–2016
G. Domairry, H. Bararnia, An Approximation of the analytic solution of some nonlinear heat transfer equations: a survey by using Homotopy analysis method, Adv. Studies Theor. Phys. 2 (2008) 507–518.
S.J. Liao, Beyond Perturbation Introduction to the Homotopy Analysis Method, 1st edn., Chapman and Hall, CRC, Press, Boca Raton, 2003, p. 336.
MATLAB 6.1, The Math Works Inc., Natick, MA, 2000.
R.D. Skeel, M. Berzins, A Method for the Spatial Discretization of Parabolic Equations in One Space Variable. SIAM Journal on Scientific and Statistical Computing 11 (1990), 1-32.