SUBORDINATION AND SUPERORDINATION RESULTS FOR CERTAIN SUBCLAASSES OF ANALYTIC FUNCTIONS DEFINED BY THE RUSCHEWEYH DERIVATIVE AND A NEW GENERALISED MULTIPLIER TRANSFORMATION
Main Article Content
Abstract
In this paper, we consider the operator defined  by where  denote the class of analytic functions in the unit disc , of the form   is the Ruscheweyh operator and ,   and  a real number with  Some interesting results of differential subordination and superordination are obtained using the new operator . Further, we also consider the sandwich-type results for this operator.
2010 Mathematics Subject Classification: Primary 30C80, Secondary 30C45.
Keywords and phrases:Â Multiplier transformation, differential subordination, differential superordination, subordinant, dominant.
Downloads
Article Details
References
M. Acu and S. Owa, Note on class of starlike functions, RIMS, Kyoto, (2006).
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20(1)(1994),1-9.
T. Bulboaca , Classes of first order differential superordinations, Demonstratio Math., 35(2)(2002), 287–292.
A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings book of the international symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey,241-250.
N. E. Cho and H. M. Srivastava , Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39-49.
N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
A. G. Macovei, Differential subordinations and superordinations for analytic functions defined by the Ruscheweyh linear operator, Int. J. Acad. Res., 3(4) (2011),I Part,26-32.
A. G. Macovei, Briot-Bouqet differential subordinations and superordinations using the linear operator, preprint.
S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 298–305.
S. S. Miller and P. T. Mocanu, Differential Subordinations and univalent functions, Michigan Math. J., 28(1981), 157–171.
S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications,Marcel Dekker, Inc., New York, Bassel, 2000.
S. S. Miller and P. T. Mocanu , Subordinants of differential superordinations Complex Var.Theory Appl. 84(2003),815–826.
S. S. Miller and P. T. Mocanu, , Briot-Bouqet differential superordinations and sandwich theorems, J. Math. Anal. Appl., 329(1)(2007), 327-335.
P. T. Mocanu, T. Bulboaca and G. St. Salagean, Teoria geometrica a functiilor univatente, Casa Cartii de Stiinta(Cluj), 1999.
St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109 - 115.
G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer –Verlag, Berlin, 1013(1983), 362-372.
S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7 (36) (2012), 1751-1760.
S. R. Swamy, Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation, Int. J. Math. Anal., 6 (32) (2012), 1553-1564.
S. R. Swamy, Some properties of analytic functions defined by a new generalized multiplier transformation, J. Math. Comput. Sci., 2(3) (2012), 759-767.
S. R. Swamy, A note on a subclass of analytic functions defined by Ruscheweyh derivative and a new generalised multiplier transformation, J. Math. Computer Sci., 2(4) (2012), 784-792.
S. R. Swamy, Differential sandwich theorems for certain subclasses of analytic functions defined by a new linear derivative operator, J. Math. Computer Sci., 2(6) (2012), 1785-1800.
S. R. Swamy, Sandwich theorems for analytic functions defined by certain new operators, J. Global Res. Math. Arch., 1 (2) (2013), 76-85.
S. R. Swamy, Some subordination properties of multivalent functions defined by certain linear operators, J. Math. Comput. Sci., 3(2) (2013), 554-568.
S. R. Swamy, R. Rohan and J. Nirmala , An inequality for certain analytic functions defned by a new generalized multiplier differential operator, Inter. J. Math. Arch., 3(12), (2012), 4898-4902.
B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, World Sci. Publishing, River Edge, N. Y., (1992), 371-374.