MATHEMATICAL MODELING OF IMMOBILISED Α-CHYMOTRYPSIN IN ACETONITRILE MEDIUM
Main Article Content
Abstract
Mathematical modeling of immobilized -chymotrypsin under kinetic control is discussed. The model is based on system of reaction diffusion equations containing a non-linear term related to enzyme reactor magazine. Modified Adomian decomposition method is employed to derive the general analytical expressions of dimensionless concentrations of acyl donor and nucleophile. Analytical results are compared with the numerical results and are found to be good in agreement. The model is able to predict reasonably well experimentally observed initial rate and nucleophile selectivity vs. enzyme loading profiles. The provided analytical solution leads to better understanding and new insight into problem.
Â
Keywords: Kinetically controlled peptide synthesis; Nucleophile; Internal diffusion and reaction; Non-linear equations; Modified Adomian decomposition method.
Downloads
Article Details
References
V.M. Paradkar, J.S. Dordick, J.Am. Chem. Soc.116 (1994) 5009.
G.Bell, P.J.Halling, B.D.Moore, J. Partridge, D.G. Rees, Trends Biotechnol. 13 (1995) 468
P. Adlercreutz, in: A.M.P. Koskinen, A.M. Klibanov (Eds.), Enzymatic Reactions in Organic Media, Chapman & Hall, Glasgow, UK, 1996, p. 9, Chap. 2.
Z. Yang, A.J. Russell, in: A.M.P. Koskinen, A.M. Klibanov (Eds.), Enzymatic Reactions in Organic Media, Chapman & Hall, Glasgow, UK, 1996, p. 43, Chap. 3.
A.M. Klibanov, Trends Biotechnol.15 (1997) 97.
The Working Party on Immobilized Biocatalysts Enzyme Microb. Technol. 5, (1983) 304–307.
S. Kamat, E.J. Beckman, A.J. Russell, Enzyme Microb.Technol.14 (1992) 265.
J. Cabral, L. Boross Tramper , J. Applied bio catalysis. Chur: Harwood Academic Publishers,1994.
S. D’Souza Immobilized enzymes in bioprocess. Curr. Sci. 77, (1999); 69-77.
E. N. Vulfson, Trends Food Sci. Technol. 4, (1993) 209-215.
J. Tramper, M. H. Vemme, H. H. Beeftink, and U. Von Stockar, Biocatalysis in Non-Conventional Media, Elsevier (1992).
A. M. P. Koskinen, and A. M. Klibanov, Enzymatic Reactions in, Organic Media, Blackie Academic & Professional (1996).
D. Vasic-Racki, M. Gjumbir, Bioproc. Eng. 2 (1987) 59.
A.V. Gusakov, Biocatalysis. 1 (1988) 301.
S. Guzy, G.M. Saidel, N. Lotan, Bioproc. Eng. 4 (1989) 239.
V.K. Jayaraman, Biotechnol. Lett. 13 (1991) 455.
S. Zvirblis, E. Dagys, A. Pauliukonis, Biocatalysis 6 (1992) 247.
P. Bernard, D. Barth, Biocatal. Biotransform. 12 (1995) 299.
S. Sato, T. Murakata, T. Suzuki, M. Chiba, Y. Goto, J.Chem. Eng. Jpn. 30 (1997) 654.
B.A. Bedell, V.V. Mozhaev, D.S. Clark, J.S. Dordick, Biotechnol. Bioeng. 58 (1998) 654.
J. Barros Raul, Ernst Wehtje, Patrick Adlercreutz, J.molecular Catalytic B: Enzymatic. 11 (2001)
-850.
G. Adomian, Convergent series solution of nonlinear equations, J. Comp. App. Math. 11, (1984)
-230.
Y. Q. Hasan, and L. M. Zhu, modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations, Surveys in Mathematics and its Applications. 3, (2008) 183-193.
M. M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comput.175, (2006) 1685-1693.
A. M. Wazwaz, Analytical approximations and Pade approximations for Volterra's population model, Appl. Math. Comput. 100,(1999) 13-25.
A. M. Wazwaz, A new method for solving singular initial value problems in the second-order differential equations, Appl. Math. Comput. 128, (2002) 45-57.
A. M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput. 111(1),(2000) 53-69.