THERMAL RADIATION AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION-POINT FLOW OF A NANOFLUID OVER A POROUS STRETCHING SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT ABSORPTION/GENERATION: LIE GROUP ANALYSIS
Main Article Content
Abstract
: In this paper, a two dimensional hydromagnetic stagnation-point flow of a radiating, chemically reacting nanofluid over a heated porous stretching sheet embedded in a porous medium with internal heat generation/absorption and suction/blowing, is analyzed. The governing partial differential equations are transformed into a set of ordinary differential equations, by Lie group analysis and the resultant equations are then solved numerically. Numerical results for the velocity, temperature, concentration and nanoparticle volume fraction as well as the friction factor, surface heat and mass transfer rates have been computed for the variations of the Magnetic parameter M, radiation parameter Nr, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter K, source/sink parameter l, Prandtl number Pr and chemical reaction parameter R.
Keywords: Thermal radiation, Chemical reaction, Nanofluid, Stretching sheet, Stagnation-point flow,Porous media, Lie group analysis.
Downloads
Article Details
References
M. Muthtamilselvan, P. Kandaswamy, J. Lee, Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simul. 15(2010) , 1501–1510.
J. Buongiorno J et al., A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 106(9) (2009), doi:10.1063/1.3245330.
D.C. Venerus, J. Buongiorno, et al.,Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications. J Appl Rheol. 20(4) (2010) doi:10.3933/ApplRheol-20- 44582.
P.E. Gharagozloo, J.K. Eaton, K.E. Goodson, Diffusion, aggregation, and the thermal conductivity of nanofluids. Appl Phys Lett. 93 (2008), doi:10.1063/1.2977868.
J. Philip, P. Shima, B. Raj, Nanofluid with tunable thermal properties. Appl Phys Lett. 92(4) (2008) doi:10.1063/1.2838304.
A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Thermal Sci. (2009), doi:10.1016/ j.ijthermalsci.2009.07.015.
D.A. Nield, A.V. Kuznetsov, The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transfer. 52(2009) 5792–5.
N. Bachok, A. Ishak, I. Pop, Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Thermal Sci; 48(9) (2010) 1663–1668.
W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transfer. 53 (2010) 2477–2483.
W. Evans, J. Fish, P. Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letter. 88(9) (2006) doi:10.1063/1.2179118. 3p.
P.E. Gharagozloo, J.E. Eaton, K.E. Goodson, Diffusion, aggregation, and the thermal conductivity of nanofluids. Appl Phys Lett. 93(2008) doi:10.1063/1.2977868.
M.A.A. Hamad, M. Ferdows, Similarity solution of boundary layer stagnation flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis. Commun Nonlinear Sci Numer Simul. 17(1) (2012) 132–140.
M.A.A. Hamad, I. Pop, A.I.M. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications, 12(2011) 1338–1346.
R. Kandasamy, P. Loganathan, P. Puvi Arasu, Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection, Nuclear Engineering and Design 241 (2011) 2053–2059.
P.O. Olanrewaju, M.A. Olanrewaju, A.O. Adesanya, Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation. International Journal of Applied Science and Technology. Vol. 2(2012) No.1.
J.A. Gbadeyan, M.A. Olanrewaju, P.O. Olanrewaju, Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with a Convective Boundary Condition in the Presence of Magnetic Field and Thermal Radiation, Australian Journal of Basic and Applied Sciences. 5(9) (2011) 1323-1334.
M.A. Hossain, K. Khanafer, K. Vafai, Effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate. Int. J. Therm. Sci., 40 (2001) 115-124.
E.M.A. Elbashbeshy, Radiation effect on heat transfer over a stretching surface. Can. J. Phys. 78(12) (2000) 1107-1112.
Rosmila Abdul-Kahar, R. Kandasamy, Muhaimin, The boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction and heat radiation using Scaling group of transformations. Computers & Fluids. 52 (2011) 15–21.
G.C. Layek, S. Mukhopadhyay, Sk.A. Samad, Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Int Commun Heat Mass Transfer. 34(2007) 347–56.
F.S. Ibrahim, M.A. Mansour, M.A.A. Hamad, Lie-group analysis of radiation and magnetic ï¬eld effects on free convection and mass transfer flow past a semi-inï¬nite vertical flat plate. Elect. J. Diff. Equ. (2005) 1–17.
S. Mukhopadhyay, G.C. Layek, S.A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int. J. Heat Mass Transf. 48(2005) 4460–4466.
R. Kandasamy, I. Muhaimin, Scaling transformation for the effect of temperature-dependent fluid viscosity with thermophoresis particle deposition on MHD-free convection heat and mass transfer over a porous stretching surface. Transp. Porous Media. 84(2010) 549–568.
C.Y. Wang, Free convection on a vertical stretching surface. J. Appl. Math. Mech. (ZAMM) 69(1989) 418–420.
M.A.A Hamad, I. Pop., Scaling Transformations for Boundary Layer Flow near the Stagnation-Point on a Heated Permeable Stretching Surface in a Porous Medium Saturated with a Nanofluid and Heat Generation/Absorption Effects. Transp. Porous Med. 87(2011) 25-39.